Spaces:
Sleeping
Sleeping
| """ | |
| train.py | |
| A complete example of fine-tuning BLIP on 'agentsea/computer-thoughts' for captioning. | |
| All processing is done in the collate function. This is simpler and avoids shape mismatches. | |
| """ | |
| import torch | |
| from datasets import load_dataset, Image as HFImage | |
| from transformers import ( | |
| BlipProcessor, | |
| BlipForConditionalGeneration, | |
| TrainingArguments, | |
| Trainer | |
| ) | |
| # 1. Load dataset | |
| dataset = load_dataset("agentsea/computer-thoughts") | |
| # 2. Rename "image_before" -> "image" and cast to HFImage so it becomes a PIL Image | |
| dataset = dataset.rename_column("image_before", "image") | |
| dataset = dataset.cast_column("image", HFImage()) | |
| # 3. Create a small subset for demo (just 5 examples). Remove this if you want the full data. | |
| train_subset = dataset["train"].select(range(5)) | |
| # 4. Load the BLIP base model and processor | |
| processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
| model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
| # 5. Define a collate_fn that transforms images+text on-the-fly | |
| def collate_fn(examples): | |
| # examples is a list of dicts, each dict with keys: | |
| # 'task', 'image', 'image_after', 'action', 'thought', 'bad_thought', 'subtask', 'bad_subtask', etc. | |
| # We'll use 'image' (PIL) and 'subtask' (string) as the caption. | |
| images = [ex["image"] for ex in examples] # PIL images | |
| texts = [ex["subtask"] for ex in examples] # or whichever text column you want | |
| inputs = processor(images=images, text=texts, return_tensors="pt", padding=True) | |
| # Add labels so the model can compute cross-entropy loss | |
| # For a basic approach: labels = input_ids | |
| inputs["labels"] = inputs["input_ids"].clone() | |
| return inputs | |
| # 6. Define training arguments | |
| training_args = TrainingArguments( | |
| output_dir="./my_blip_computer_thoughts", | |
| num_train_epochs=1, | |
| per_device_train_batch_size=1, | |
| gradient_accumulation_steps=4, # effectively batch size 4 per device | |
| logging_steps=5, | |
| save_steps=20, | |
| save_total_limit=2, | |
| remove_unused_columns=False # important when custom columns are in the dataset | |
| ) | |
| # 6. Create Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=train_subset, # or dataset["train"] for the full set | |
| data_collator=collate_fn, | |
| ) | |
| # 7. Train | |
| trainer.train() | |
| # 9. Push the final model + processor to Hugging Face Hub | |
| # (Make sure you're logged in: huggingface-cli login) | |
| model.push_to_hub("zeddotes/blip-computer-thoughts") | |
| processor.push_to_hub("zeddotes/blip-computer-thoughts") | |
| print("Done training and pushed model to zeddotes/blip-computer-thoughts!") | |