zealous79A's picture
Update app.py
98ed10b verified
raw
history blame
2.37 kB
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
"""
For more information on `huggingface_hub` Inference API support,
please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface,
peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
"""
def load_new_dataset():
gr.Info(message="Loading dataset...")
ds = load_dataset("fka/awesome-chatgpt-prompts", split="train")
#----------------------
with gr.Blocks() as demo:
text_input = gr.Textbox(visible=True, label="Query")
btn_run = gr.Button(visible=True, value="Search")
results_output = gr.Dataframe(label="Results", visible=True, wrap=True)
btn_run.click(
#fn=run_query,
#inputs=[text_input, query_input, split_dropdown, column_dropdown],
#outputs=results_output,
print("button pressed!")
)
#----------------------
if __name__ == "__main__":
load_new_dataset()
demo.launch()