Spaces:
Sleeping
Sleeping
File size: 1,186 Bytes
ceef207 24ac06a 8af569d 24ac06a 5901268 24ac06a 49984ff 8af569d ceef207 5901268 8af569d 5901268 057ae12 16d482d 5901268 3458f7f 98ed10b 057ae12 3458f7f 5901268 057ae12 3458f7f 16d482d ceef207 24ac06a 8659e00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import pandas
global ds
def load_new_dataset():
gr.Info(message="Loading dataset...")
df = pd.read_csv("hf://datasets/fka/awesome-chatgpt-prompts/prompts.csv")
def run_query(input: str):
try:
df_results = df[df['act'] == input]
logging_message = f"Results for '{input}' found."
except Exception as e:
raise gr.Error(f"Error running query: {e}")
return df_results, logging_message
#----------------------
with gr.Blocks() as demo:
text_input = gr.Textbox(visible=True, label="Enter value for 'act':")
btn_run = gr.Button(visible=True, value="Search")
results_output = gr.Dataframe(label="Results", visible=True, wrap=True)
logging_output = gr.Label(visible="True", value="My first logging message")
btn_run.click(
fn=run_query, # Call the run_query function and update the label
inputs=text_input,
outputs=[results_output, logging_output] # Update both the DataFrame and the label
)
#----------------------
if __name__ == "__main__":
load_new_dataset()
demo.launch()
|