File size: 1,732 Bytes
7276a9d
5ee37e6
 
 
 
ab1f8dc
7276a9d
ab1f8dc
 
 
 
5ee37e6
 
ab1f8dc
5ee37e6
7276a9d
5ee37e6
 
 
c0f6104
ab1f8dc
 
 
c0f6104
ab1f8dc
 
c0f6104
 
ab1f8dc
2bfa22f
 
 
c0f6104
 
ab1f8dc
c0f6104
 
 
2bfa22f
c0f6104
 
 
2bfa22f
 
c0f6104
ab1f8dc
 
 
 
 
 
 
 
c0f6104
 
ab1f8dc
 
7276a9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# app.py in Hugging Face Space
import gradio as gr
from colpali_engine.models import ColQwen2, ColQwen2Processor
import torch
from PIL import Image
import logging
import os

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("colqwen-api")

# Initialize model
logger.info("Loading ColQwen2 model...")
model = ColQwen2.from_pretrained(
    "vidore/colqwen2-v1.0",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0")
model = model.eval()
logger.info("Model loaded successfully")

def process_image(image):
    try:
        logger.info("Processing image")
        if not isinstance(image, Image.Image):
            image = Image.fromarray(image)
        
        # Process image with proper settings
        inputs = processor.process_images(  # Changed from processor()
            images=[image],
            return_tensors="pt"
        ).to(model.device)
        
        logger.info("Generating embeddings")
        with torch.no_grad():
            outputs = model(**inputs)
            embeddings = outputs.cpu().numpy()
            
        logger.info(f"Embeddings shape: {embeddings.shape}")
        return {
            "mixed_embedding_p1": embeddings[0, :1024].tolist(),
            "mixed_embedding_p2": embeddings[0, 1024:].tolist(),
        }
    except Exception as e:
        logger.error(f"Error: {str(e)}", exc_info=True)
        raise

interface = gr.Interface(
    fn=process_image,
    inputs=gr.Image(),
    outputs="json",
    title="ColQwen2 Embedding API",
    description="Generate embeddings from images using ColQwen2"
)

# Let Gradio choose an available port
interface.launch(server_name="0.0.0.0")