File size: 4,519 Bytes
1bd76f4
 
 
 
401c3ed
752029d
401c3ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
752029d
401c3ed
 
1bd76f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import gradio as gr
from io import StringIO

# Embed the CSV data directly in the code
csv_data = '''cik,institution,final_score,long_term_performance_score,conviction_and_strategy_score,research_quality_and_adaptability_score,influence_and_governance_score,top_holdings_performance_score
0001843237,CEPHEI CAPITAL MANAGEMENT (HONG KONG) LTD,36,14,11,7,3,1
0001407024,NNS HOLDING,24,5,8,5,4,2
0001451928,SAC CAPITAL ADVISORS LP,50,20,10,12,6,2
0001905393,"PCG WEALTH ADVISORS, LLC",68,25,15,14,11,3
0001425362,"WHITE RIVER INVESTMENT PARTNERS, LLC",31,7,10,8,4,2
0001730210,"TRH FINANCIAL, LLC",72,28,16,15,10,3
0001165880,MONTPELIER RE HOLDINGS LTD,68,25,18,12,10,3
0001352776,REGIS MANAGEMENT CO LLC,73,28,17,14,11,3
0001582272,"BATTERY GLOBAL ADVISORS, LLC",65,22,16,14,10,3
0001466715,TRISHIELD CAPITAL MANAGEMENT LLC,59,18,,,,
0001092688,IBBOTSON ASSOCIATES INC,69,28,16,12,10,3
0001054880,HUTCHENS INVESTMENT MANAGEMENT INC,69,25,,,,3
0001650781,AXAR CAPITAL MANAGEMENT L.P.,51,16,14,12,6,3
0001425160,MERCHANTS' GATE CAPITAL LP,55,23,12,10,8,2
0001921487,"BEACON CAPITAL MANAGEMENT, LLC",78,25,22,15,12,4
'''

# Load the data from the embedded CSV string
df = pd.read_csv(StringIO(csv_data))

# Clean the data
df = df.dropna(subset=['final_score'])
df = df.assign(institution=df['institution'].str.strip())

def create_radar_chart(institution):
    # Get the data for the selected institution
    inst_data = df[df['institution'] == institution].iloc[0]
    
    # Prepare the data for the radar chart
    categories = ['Long-term Performance', 'Conviction & Strategy', 'Research Quality',
                  'Influence & Governance', 'Top Holdings Performance']
    values = [inst_data['long_term_performance_score'],
              inst_data['conviction_and_strategy_score'],
              inst_data['research_quality_and_adaptability_score'],
              inst_data['influence_and_governance_score'],
              inst_data['top_holdings_performance_score']]
    
    # Create the radar chart
    fig = go.Figure()

    fig.add_trace(go.Scatterpolar(
        r=values,
        theta=categories,
        fill='toself',
        name=institution
    ))

    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, max(values)]
            )),
        showlegend=False,
        title=f"{institution} Performance Metrics"
    )
    
    return fig

def create_bar_chart(institution):
    # Get the data for the selected institution
    inst_data = df[df['institution'] == institution].iloc[0]
    
    # Prepare the data for the bar chart
    categories = ['Final Score', 'Long-term Performance', 'Conviction & Strategy', 'Research Quality',
                  'Influence & Governance', 'Top Holdings Performance']
    values = [inst_data['final_score'],
              inst_data['long_term_performance_score'],
              inst_data['conviction_and_strategy_score'],
              inst_data['research_quality_and_adaptability_score'],
              inst_data['influence_and_governance_score'],
              inst_data['top_holdings_performance_score']]
    
    # Create the bar chart
    fig = go.Figure(go.Bar(
        x=categories,
        y=values,
        text=values,
        textposition='auto',
    ))

    fig.update_layout(
        title=f"{institution} Scores Comparison",
        xaxis_title="Metrics",
        yaxis_title="Score",
        yaxis=dict(range=[0, 100])
    )
    
    return fig

def update_dashboard(institution):
    radar_chart = create_radar_chart(institution)
    bar_chart = create_bar_chart(institution)
    
    inst_data = df[df['institution'] == institution].iloc[0]
    cik = inst_data['cik']
    final_score = inst_data['final_score']
    
    return (f"CIK: {cik}", 
            f"Final Score: {final_score:.2f}", 
            radar_chart, 
            bar_chart)

# Create the Gradio interface
iface = gr.Interface(
    fn=update_dashboard,
    inputs=gr.Dropdown(choices=sorted(df['institution'].unique()), label="Select an Institution"),
    outputs=[
        gr.Textbox(label="CIK"),
        gr.Textbox(label="Final Score"),
        gr.Plot(label="Performance Metrics Radar Chart"),
        gr.Plot(label="Scores Comparison Bar Chart")
    ],
    title="Institution Performance Dashboard",
    description="Select an institution to view its performance metrics and scores."
)

# For Hugging Face Spaces deployment
iface.launch()