File size: 15,019 Bytes
9a94c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import streamlit as st
from finetune_augmentor import AugmentationExample, AugmentationConfig, FinetuningDataAugmentor
import json
import streamlit.components.v1 as components
from streamlit_ace import st_ace  # Editable code block

# -------------------------------
# Page Configuration and CSS
# -------------------------------

st.set_page_config(
    page_title="Finetuning Data Augmentation Generator",
    layout="wide",
    initial_sidebar_state="expanded",
)


components.html(
    """

    <div style="position: fixed; top: 10px; right: 10px; z-index: 100;">
      <a href="https://github.com/zamalali/ftboost" target="_blank">
        <img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" style="height: 30px; margin-right: 10px;">
      </a>
      <a href="https://huggingface.co/zamal" target="_blank">
        <img src="https://huggingface.co/front/assets/huggingface_logo.svg" alt="Hugging Face" style="height: 30px;">
      </a>
    </div>
    """,
    height=40
)


st.markdown(
    """
    <style>
    /* Main content area */
    .block-container {
        background-color: #121212;
        color: #ffffff;
    }
    /* Sidebar styling */
    [data-testid="stSidebar"] {
        background-color: #121212;
        color: #ffffff;
    }
    [data-testid="stSidebar"] * {
        color: #ffffff !important;
    }
    /* Button styling */
    .stButton>button, .stDownloadButton>button {
        background-color: #808080 !important;
        color: #ffffff !important;
        font-size: 16px;
        border: none;
        border-radius: 5px;
        padding: 0.5rem 1.5rem;
        margin-top: 1rem;
    }
    /* Text inputs */
    .stTextInput>div>input, .stNumberInput>div>input {
        border-radius: 5px;
        border: 1px solid #ffffff;
        padding: 0.5rem;
        background-color: #1a1a1a;
        color: #ffffff;
    }
    .stTextArea>textarea {
        background-color: #1a1a1a;
        color: #ffffff;
        font-family: "Courier New", monospace;
        border: 1px solid #ffffff;
        border-radius: 5px;
        padding: 1rem;
    }
    /* Header colors */
    h1 { color: #00FF00; }
    h2, h3, h4 { color: #FFFF00; }
    /* Field labels */
    label { color: #ffffff !important; }
    /* Remove extra margin in code blocks */
    pre { margin: 0; }
    /* Ace editor style overrides */
    .ace_editor {
        border: none !important;
        box-shadow: none !important;
        background-color: #121212 !important;
    }
    /* Override alert (error/success) text colors */
    [data-testid="stAlert"] { color: #ffffff !important; }
    /* Add white border to expander header */
    [data-testid="stExpander"] > div:first-child {
        border: 1px solid #ffffff !important;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

# Inject JavaScript to scroll to top on load
components.html(
    """
    <script>
    document.addEventListener("DOMContentLoaded", function() {
        setTimeout(function() { window.scrollTo(0, 0); }, 100);
    });
    </script>
    """,
    height=0,
)

# -------------------------------
# App Title and Description
# -------------------------------
st.title("ftBoost πŸš€")
st.markdown(
    """
    **ftBoost Hero** is a powerful tool designed to help you generate high-quality fine-tuning data for AI models. 
    Whether you're working with OpenAI, Gemini, Mistral, or LLaMA models, this app allows you to create structured 
    input-output pairs and apply augmentation techniques to enhance dataset quality. With advanced tuning parameters, 
    semantic similarity controls, and fluency optimization, **ftBoost Hero** ensures that your fine-tuning data is diverse, 
    well-structured, and ready for training. πŸš€
    """,
    unsafe_allow_html=True,
)

# -------------------------------
# Step A: File Upload & Auto-Detection
# -------------------------------
st.markdown("##### Step 1: Upload Your Finetuning data JSONL File if you have one already (Optional)")
uploaded_file = st.file_uploader("Upload your train.jsonl file", type=["jsonl", "txt"])
uploaded_examples = []
detected_model = None

if uploaded_file is not None:
    try:
        file_content = uploaded_file.getvalue().decode("utf-8")
        # Auto-detect model type from the first valid snippet
        for line in file_content.splitlines():
            if line.strip():
                record = json.loads(line)
                if "messages" in record:
                    msgs = record["messages"]
                    if len(msgs) >= 3 and msgs[0].get("role") == "system":
                        detected_model = "OpenAI Models"
                    elif len(msgs) == 2:
                        detected_model = "Mistral Models"
                elif "contents" in record:
                    detected_model = "Gemini Models"
                break
        
        # Display an info message based on detection result
        if detected_model is not None:
            st.info(f"This JSONL file format supports the **{detected_model}**.")
        else:
            st.info("The uploaded JSONL file format is not recognized. Please manually select the appropriate model.")
        
        # Process the entire file for valid examples
        for line in file_content.splitlines():
            if not line.strip():
                continue
            record = json.loads(line)
            input_text, output_text = "", ""
            if "messages" in record:
                msgs = record["messages"]
                if len(msgs) >= 3:
                    input_text = msgs[1].get("content", "").strip()
                    output_text = msgs[2].get("content", "").strip()
                elif len(msgs) == 2:
                    input_text = msgs[0].get("content", "").strip()
                    output_text = msgs[1].get("content", "").strip()
            elif "contents" in record:
                contents = record["contents"]
                if len(contents) >= 2 and "parts" in contents[0] and "parts" in contents[1]:
                    input_text = contents[0]["parts"][0].get("text", "").strip()
                    output_text = contents[1]["parts"][0].get("text", "").strip()
            if input_text and output_text:
                uploaded_examples.append(AugmentationExample(input_text=input_text, output_text=output_text))
        if len(uploaded_examples) < 3:
            st.error("Uploaded file does not contain at least 3 valid input/output pairs.")
        else:
            st.success(f"Uploaded file processed: {len(uploaded_examples)} valid input/output pairs loaded.")
    except Exception as e:
        st.error(f"Error processing uploaded file: {e}")

# -------------------------------
# Step B: Model Selection
# -------------------------------
default_model = detected_model if detected_model is not None else "OpenAI Models"
model_options = ["OpenAI Models", "Gemini Models", "Mistral Models", "Llama Models"]
default_index = model_options.index(default_model) if default_model in model_options else 0
model_type = st.selectbox(
    "Select the output format for finetuning",
    model_options,
    index=default_index
)

# -------------------------------
# Step C: System Message & API Key
# -------------------------------
system_message = st.text_input("System Message (optional) only for OpenAI models", value="Marv is a factual chatbot that is also sarcastic.")
# groq_api_key = st.text_input("LangChain Groq API Key", type="password", help="Enter your LangChain Groq API Key for data augmentation")



groq_api_key = st.text_input(
    "LangChain Groq API Key (if you don't have one, get it from [here](https://console.groq.com/keys))",
    type="password",
    help="Enter your LangChain Groq API Key for data augmentation"
)
# -------------------------------
# Step D: Input Schema Template Display
# -------------------------------
st.markdown("#### Input Schema Template")
if model_type == "OpenAI Models":
    st.code(
        '''{
  "messages": [
    {"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."},
    {"role": "user", "content": "What's the capital of France?"},
    {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}
  ]
}''', language="json")
elif model_type == "Gemini Models":
    st.code(
        '''{
  "contents": [
    {"role": "user", "parts": [{"text": "What's the capital of France?"}]},
    {"role": "model", "parts": [{"text": "Paris, as if everyone doesn't know that already."}]}
  ]
}''', language="json")
else:
    st.code(
        '''{
  "messages": [
    {"role": "user", "content": "What's the capital of France?"},
    {"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}
  ]
}''', language="json")

# -------------------------------
# Step E: Manual Input of Pairs (if no file uploaded)
# -------------------------------
if uploaded_file is None:
    st.markdown("##### Enter at least 3 input/output pairs manually:")
    num_pairs = st.number_input("Number of Pairs", min_value=3, value=3, step=1)
    pair_templates = []
    for i in range(num_pairs):
        st.markdown(f"##### Pair {i+1}")
        if model_type == "OpenAI Models":
            init_template = ('''{
  "messages": [
    {"role": "system", "content": "''' + system_message + '''"},
    {"role": "user", "content": "Enter your input text here"},
    {"role": "assistant", "content": "Enter your output text here"}
  ]
}''').strip()
            ace_key = f"pair_{i}_{model_type}_{system_message}"
        elif model_type == "Gemini Models":
            init_template = ('''{
  "contents": [
    {"role": "user", "parts": [{"text": "Enter your input text here"}]},
    {"role": "model", "parts": [{"text": "Enter your output text here"}]}
  ]
}''').strip()
            ace_key = f"pair_{i}_{model_type}"
        else:
            init_template = ('''{
  "messages": [
    {"role": "user", "content": "Enter your input text here"},
    {"role": "assistant", "content": "Enter your output text here"}
  ]
}''').strip()
            ace_key = f"pair_{i}_{model_type}"
    
        pair = st_ace(
            placeholder="Edit your code here...",
            value=init_template,
            language="json",
            theme="monokai",
            key=ace_key,
            height=150
        )
        pair_templates.append(pair)

# -------------------------------
# Step F: Augmentation Settings
# -------------------------------
target_augmented = st.number_input("Number of Augmented Pairs to Generate", min_value=5, value=5, step=1)
finetuning_goal = "Improve conversational clarity and capture subtle nuances"
st.markdown(f"**Finetuning Goal:** {finetuning_goal}")

with st.expander("Show/Hide Advanced Tuning Parameters"):
    min_semantic = st.slider("Minimum Semantic Similarity", 0.0, 1.0, 0.80, 0.01)
    max_semantic = st.slider("Maximum Semantic Similarity", 0.0, 1.0, 0.95, 0.01)
    min_diversity = st.slider("Minimum Diversity Score", 0.0, 1.0, 0.70, 0.01)
    min_fluency = st.slider("Minimum Fluency Score", 0.0, 1.0, 0.80, 0.01)

# -------------------------------
# Step G: Generate Data Button and Pipeline Execution
# -------------------------------
if st.button("Generate Data"):
    if not groq_api_key.strip():
        st.error("Please enter your LangChain Groq API Key to proceed.")
        st.stop()
    
    # Choose examples: from uploaded file if available; otherwise from manual input.
    if uploaded_file is not None and len(uploaded_examples) >= 3:
        examples = uploaded_examples
    else:
        examples = []
        errors = []
        for idx, pair in enumerate(pair_templates):
            try:
                record = json.loads(pair)
                if model_type == "OpenAI Models":
                    msgs = record.get("messages", [])
                    if len(msgs) != 3:
                        raise ValueError("Expected 3 messages")
                    input_text = msgs[1].get("content", "").strip()
                    output_text = msgs[2].get("content", "").strip()
                elif model_type == "Gemini Models":
                    contents = record.get("contents", [])
                    if len(contents) < 2:
                        raise ValueError("Expected at least 2 contents")
                    input_text = contents[0]["parts"][0].get("text", "").strip()
                    output_text = contents[1]["parts"][0].get("text", "").strip()
                else:
                    msgs = record.get("messages", [])
                    if len(msgs) != 2:
                        raise ValueError("Expected 2 messages for this format")
                    input_text = msgs[0].get("content", "").strip()
                    output_text = msgs[1].get("content", "").strip()
                if not input_text or not output_text:
                    raise ValueError("Input or output text is empty")
                examples.append(AugmentationExample(input_text=input_text, output_text=output_text))
            except Exception as e:
                errors.append(f"Error in pair {idx+1}: {e}")
        if errors:
            st.error("There were errors in your input pairs:\n" + "\n".join(errors))
        elif len(examples) < 3:
            st.error("Please provide at least 3 valid pairs.")
    
    if len(examples) >= 3:
        target_model = "mixtral-8x7b-32768"
        try:
            config = AugmentationConfig(
                target_model=target_model,
                examples=examples,
                finetuning_goal=finetuning_goal,
                groq_api_key=groq_api_key,
                system_message=system_message,
                min_semantic_similarity=min_semantic,
                max_semantic_similarity=max_semantic,
                min_diversity_score=min_diversity,
                min_fluency_score=min_fluency
            )
        except Exception as e:
            st.error(f"Configuration error: {e}")
            st.stop()
        
        st.markdown('<p style="color: white;">Running augmentation pipeline... Please wait.</p>', unsafe_allow_html=True)
        
        augmentor = FinetuningDataAugmentor(config)
        augmentor.run_augmentation(target_count=target_augmented)
        
        fmt = model_type.lower()
        if fmt == "openai models":
            output_data = augmentor.get_formatted_output(format_type="openai")
        elif fmt == "gemini models":
            output_data = augmentor.get_formatted_output(format_type="gemini")
        elif fmt == "mistral models":
            output_data = augmentor.get_formatted_output(format_type="mistral")
        elif fmt == "llama models":
            output_data = augmentor.get_formatted_output(format_type="llama")
        else:
            output_data = augmentor.get_formatted_output(format_type="openai")
        
        st.markdown("### Augmented Data")
        st.code(output_data, language="json")
        st.download_button("Download train.jsonl", output_data, file_name="train.jsonl")