Spaces:
Running
Running
File size: 15,019 Bytes
9a94c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import streamlit as st
from finetune_augmentor import AugmentationExample, AugmentationConfig, FinetuningDataAugmentor
import json
import streamlit.components.v1 as components
from streamlit_ace import st_ace # Editable code block
# -------------------------------
# Page Configuration and CSS
# -------------------------------
st.set_page_config(
page_title="Finetuning Data Augmentation Generator",
layout="wide",
initial_sidebar_state="expanded",
)
components.html(
"""
<div style="position: fixed; top: 10px; right: 10px; z-index: 100;">
<a href="https://github.com/zamalali/ftboost" target="_blank">
<img src="https://github.githubassets.com/images/modules/logos_page/GitHub-Mark.png" alt="GitHub" style="height: 30px; margin-right: 10px;">
</a>
<a href="https://huggingface.co/zamal" target="_blank">
<img src="https://huggingface.co/front/assets/huggingface_logo.svg" alt="Hugging Face" style="height: 30px;">
</a>
</div>
""",
height=40
)
st.markdown(
"""
<style>
/* Main content area */
.block-container {
background-color: #121212;
color: #ffffff;
}
/* Sidebar styling */
[data-testid="stSidebar"] {
background-color: #121212;
color: #ffffff;
}
[data-testid="stSidebar"] * {
color: #ffffff !important;
}
/* Button styling */
.stButton>button, .stDownloadButton>button {
background-color: #808080 !important;
color: #ffffff !important;
font-size: 16px;
border: none;
border-radius: 5px;
padding: 0.5rem 1.5rem;
margin-top: 1rem;
}
/* Text inputs */
.stTextInput>div>input, .stNumberInput>div>input {
border-radius: 5px;
border: 1px solid #ffffff;
padding: 0.5rem;
background-color: #1a1a1a;
color: #ffffff;
}
.stTextArea>textarea {
background-color: #1a1a1a;
color: #ffffff;
font-family: "Courier New", monospace;
border: 1px solid #ffffff;
border-radius: 5px;
padding: 1rem;
}
/* Header colors */
h1 { color: #00FF00; }
h2, h3, h4 { color: #FFFF00; }
/* Field labels */
label { color: #ffffff !important; }
/* Remove extra margin in code blocks */
pre { margin: 0; }
/* Ace editor style overrides */
.ace_editor {
border: none !important;
box-shadow: none !important;
background-color: #121212 !important;
}
/* Override alert (error/success) text colors */
[data-testid="stAlert"] { color: #ffffff !important; }
/* Add white border to expander header */
[data-testid="stExpander"] > div:first-child {
border: 1px solid #ffffff !important;
}
</style>
""",
unsafe_allow_html=True,
)
# Inject JavaScript to scroll to top on load
components.html(
"""
<script>
document.addEventListener("DOMContentLoaded", function() {
setTimeout(function() { window.scrollTo(0, 0); }, 100);
});
</script>
""",
height=0,
)
# -------------------------------
# App Title and Description
# -------------------------------
st.title("ftBoost π")
st.markdown(
"""
**ftBoost Hero** is a powerful tool designed to help you generate high-quality fine-tuning data for AI models.
Whether you're working with OpenAI, Gemini, Mistral, or LLaMA models, this app allows you to create structured
input-output pairs and apply augmentation techniques to enhance dataset quality. With advanced tuning parameters,
semantic similarity controls, and fluency optimization, **ftBoost Hero** ensures that your fine-tuning data is diverse,
well-structured, and ready for training. π
""",
unsafe_allow_html=True,
)
# -------------------------------
# Step A: File Upload & Auto-Detection
# -------------------------------
st.markdown("##### Step 1: Upload Your Finetuning data JSONL File if you have one already (Optional)")
uploaded_file = st.file_uploader("Upload your train.jsonl file", type=["jsonl", "txt"])
uploaded_examples = []
detected_model = None
if uploaded_file is not None:
try:
file_content = uploaded_file.getvalue().decode("utf-8")
# Auto-detect model type from the first valid snippet
for line in file_content.splitlines():
if line.strip():
record = json.loads(line)
if "messages" in record:
msgs = record["messages"]
if len(msgs) >= 3 and msgs[0].get("role") == "system":
detected_model = "OpenAI Models"
elif len(msgs) == 2:
detected_model = "Mistral Models"
elif "contents" in record:
detected_model = "Gemini Models"
break
# Display an info message based on detection result
if detected_model is not None:
st.info(f"This JSONL file format supports the **{detected_model}**.")
else:
st.info("The uploaded JSONL file format is not recognized. Please manually select the appropriate model.")
# Process the entire file for valid examples
for line in file_content.splitlines():
if not line.strip():
continue
record = json.loads(line)
input_text, output_text = "", ""
if "messages" in record:
msgs = record["messages"]
if len(msgs) >= 3:
input_text = msgs[1].get("content", "").strip()
output_text = msgs[2].get("content", "").strip()
elif len(msgs) == 2:
input_text = msgs[0].get("content", "").strip()
output_text = msgs[1].get("content", "").strip()
elif "contents" in record:
contents = record["contents"]
if len(contents) >= 2 and "parts" in contents[0] and "parts" in contents[1]:
input_text = contents[0]["parts"][0].get("text", "").strip()
output_text = contents[1]["parts"][0].get("text", "").strip()
if input_text and output_text:
uploaded_examples.append(AugmentationExample(input_text=input_text, output_text=output_text))
if len(uploaded_examples) < 3:
st.error("Uploaded file does not contain at least 3 valid input/output pairs.")
else:
st.success(f"Uploaded file processed: {len(uploaded_examples)} valid input/output pairs loaded.")
except Exception as e:
st.error(f"Error processing uploaded file: {e}")
# -------------------------------
# Step B: Model Selection
# -------------------------------
default_model = detected_model if detected_model is not None else "OpenAI Models"
model_options = ["OpenAI Models", "Gemini Models", "Mistral Models", "Llama Models"]
default_index = model_options.index(default_model) if default_model in model_options else 0
model_type = st.selectbox(
"Select the output format for finetuning",
model_options,
index=default_index
)
# -------------------------------
# Step C: System Message & API Key
# -------------------------------
system_message = st.text_input("System Message (optional) only for OpenAI models", value="Marv is a factual chatbot that is also sarcastic.")
# groq_api_key = st.text_input("LangChain Groq API Key", type="password", help="Enter your LangChain Groq API Key for data augmentation")
groq_api_key = st.text_input(
"LangChain Groq API Key (if you don't have one, get it from [here](https://console.groq.com/keys))",
type="password",
help="Enter your LangChain Groq API Key for data augmentation"
)
# -------------------------------
# Step D: Input Schema Template Display
# -------------------------------
st.markdown("#### Input Schema Template")
if model_type == "OpenAI Models":
st.code(
'''{
"messages": [
{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."},
{"role": "user", "content": "What's the capital of France?"},
{"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}
]
}''', language="json")
elif model_type == "Gemini Models":
st.code(
'''{
"contents": [
{"role": "user", "parts": [{"text": "What's the capital of France?"}]},
{"role": "model", "parts": [{"text": "Paris, as if everyone doesn't know that already."}]}
]
}''', language="json")
else:
st.code(
'''{
"messages": [
{"role": "user", "content": "What's the capital of France?"},
{"role": "assistant", "content": "Paris, as if everyone doesn't know that already."}
]
}''', language="json")
# -------------------------------
# Step E: Manual Input of Pairs (if no file uploaded)
# -------------------------------
if uploaded_file is None:
st.markdown("##### Enter at least 3 input/output pairs manually:")
num_pairs = st.number_input("Number of Pairs", min_value=3, value=3, step=1)
pair_templates = []
for i in range(num_pairs):
st.markdown(f"##### Pair {i+1}")
if model_type == "OpenAI Models":
init_template = ('''{
"messages": [
{"role": "system", "content": "''' + system_message + '''"},
{"role": "user", "content": "Enter your input text here"},
{"role": "assistant", "content": "Enter your output text here"}
]
}''').strip()
ace_key = f"pair_{i}_{model_type}_{system_message}"
elif model_type == "Gemini Models":
init_template = ('''{
"contents": [
{"role": "user", "parts": [{"text": "Enter your input text here"}]},
{"role": "model", "parts": [{"text": "Enter your output text here"}]}
]
}''').strip()
ace_key = f"pair_{i}_{model_type}"
else:
init_template = ('''{
"messages": [
{"role": "user", "content": "Enter your input text here"},
{"role": "assistant", "content": "Enter your output text here"}
]
}''').strip()
ace_key = f"pair_{i}_{model_type}"
pair = st_ace(
placeholder="Edit your code here...",
value=init_template,
language="json",
theme="monokai",
key=ace_key,
height=150
)
pair_templates.append(pair)
# -------------------------------
# Step F: Augmentation Settings
# -------------------------------
target_augmented = st.number_input("Number of Augmented Pairs to Generate", min_value=5, value=5, step=1)
finetuning_goal = "Improve conversational clarity and capture subtle nuances"
st.markdown(f"**Finetuning Goal:** {finetuning_goal}")
with st.expander("Show/Hide Advanced Tuning Parameters"):
min_semantic = st.slider("Minimum Semantic Similarity", 0.0, 1.0, 0.80, 0.01)
max_semantic = st.slider("Maximum Semantic Similarity", 0.0, 1.0, 0.95, 0.01)
min_diversity = st.slider("Minimum Diversity Score", 0.0, 1.0, 0.70, 0.01)
min_fluency = st.slider("Minimum Fluency Score", 0.0, 1.0, 0.80, 0.01)
# -------------------------------
# Step G: Generate Data Button and Pipeline Execution
# -------------------------------
if st.button("Generate Data"):
if not groq_api_key.strip():
st.error("Please enter your LangChain Groq API Key to proceed.")
st.stop()
# Choose examples: from uploaded file if available; otherwise from manual input.
if uploaded_file is not None and len(uploaded_examples) >= 3:
examples = uploaded_examples
else:
examples = []
errors = []
for idx, pair in enumerate(pair_templates):
try:
record = json.loads(pair)
if model_type == "OpenAI Models":
msgs = record.get("messages", [])
if len(msgs) != 3:
raise ValueError("Expected 3 messages")
input_text = msgs[1].get("content", "").strip()
output_text = msgs[2].get("content", "").strip()
elif model_type == "Gemini Models":
contents = record.get("contents", [])
if len(contents) < 2:
raise ValueError("Expected at least 2 contents")
input_text = contents[0]["parts"][0].get("text", "").strip()
output_text = contents[1]["parts"][0].get("text", "").strip()
else:
msgs = record.get("messages", [])
if len(msgs) != 2:
raise ValueError("Expected 2 messages for this format")
input_text = msgs[0].get("content", "").strip()
output_text = msgs[1].get("content", "").strip()
if not input_text or not output_text:
raise ValueError("Input or output text is empty")
examples.append(AugmentationExample(input_text=input_text, output_text=output_text))
except Exception as e:
errors.append(f"Error in pair {idx+1}: {e}")
if errors:
st.error("There were errors in your input pairs:\n" + "\n".join(errors))
elif len(examples) < 3:
st.error("Please provide at least 3 valid pairs.")
if len(examples) >= 3:
target_model = "mixtral-8x7b-32768"
try:
config = AugmentationConfig(
target_model=target_model,
examples=examples,
finetuning_goal=finetuning_goal,
groq_api_key=groq_api_key,
system_message=system_message,
min_semantic_similarity=min_semantic,
max_semantic_similarity=max_semantic,
min_diversity_score=min_diversity,
min_fluency_score=min_fluency
)
except Exception as e:
st.error(f"Configuration error: {e}")
st.stop()
st.markdown('<p style="color: white;">Running augmentation pipeline... Please wait.</p>', unsafe_allow_html=True)
augmentor = FinetuningDataAugmentor(config)
augmentor.run_augmentation(target_count=target_augmented)
fmt = model_type.lower()
if fmt == "openai models":
output_data = augmentor.get_formatted_output(format_type="openai")
elif fmt == "gemini models":
output_data = augmentor.get_formatted_output(format_type="gemini")
elif fmt == "mistral models":
output_data = augmentor.get_formatted_output(format_type="mistral")
elif fmt == "llama models":
output_data = augmentor.get_formatted_output(format_type="llama")
else:
output_data = augmentor.get_formatted_output(format_type="openai")
st.markdown("### Augmented Data")
st.code(output_data, language="json")
st.download_button("Download train.jsonl", output_data, file_name="train.jsonl")
|