chore: update
Browse files- ConcreteXGBoostClassifier.pkl +3 -0
- app.py +405 -0
- client_folder/client.zip +3 -0
- client_folder/server.zip +3 -0
- client_folder/versions.json +1 -0
- preprocessing.py +83 -0
- server.py +93 -0
- symptoms_categories.py +226 -0
ConcreteXGBoostClassifier.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e95ed531c5b4fd4d23330dee9a72884979d93c4be55c1cc25e06efe027253ce4
|
| 3 |
+
size 599833
|
app.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle as pkl
|
| 2 |
+
import shutil
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from time import time
|
| 5 |
+
from typing import List, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from sklearn import metrics, preprocessing
|
| 11 |
+
from sklearn.ensemble import RandomForestClassifier as SklearnRandomForestClassifier
|
| 12 |
+
from sklearn.model_selection import train_test_split
|
| 13 |
+
|
| 14 |
+
from concrete.ml.common.serialization.loaders import load, loads
|
| 15 |
+
from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
|
| 16 |
+
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
|
| 17 |
+
|
| 18 |
+
path_to_model = Path("./client_folder").resolve()
|
| 19 |
+
|
| 20 |
+
import subprocess
|
| 21 |
+
|
| 22 |
+
from preprocessing import ( # pylint: disable=wrong-import-position, no-name-in-module
|
| 23 |
+
map_prediction,
|
| 24 |
+
pretty_print,
|
| 25 |
+
)
|
| 26 |
+
from symptoms_categories import SYMPTOMS_LIST
|
| 27 |
+
|
| 28 |
+
ENCRYPTED_DATA_BROWSER_LIMIT = 500
|
| 29 |
+
# This repository's directory
|
| 30 |
+
REPO_DIR = Path(__file__).parent
|
| 31 |
+
|
| 32 |
+
print(f"{REPO_DIR=}")
|
| 33 |
+
# subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
| 34 |
+
# time.sleep(3)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def load_data():
|
| 38 |
+
# Load data
|
| 39 |
+
df_train = pd.read_csv("./data/Training_preprocessed.csv")
|
| 40 |
+
df_test = pd.read_csv("./data/Testing_preprocessed.csv")
|
| 41 |
+
|
| 42 |
+
# Separate the traget from the training set
|
| 43 |
+
# df['prognosis] contains the name of the disease
|
| 44 |
+
# df['y] contains the numeric label of the disease
|
| 45 |
+
|
| 46 |
+
y_train = df_train["y"]
|
| 47 |
+
X_train = df_train.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
|
| 48 |
+
|
| 49 |
+
y_test = df_train["y"]
|
| 50 |
+
X_test = df_test.drop(columns=["y", "prognosis"], axis=1, errors="ignore")
|
| 51 |
+
|
| 52 |
+
return (df_train, X_train, X_test), (df_test, y_train, y_test)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def load_model(X_train, y_train):
|
| 56 |
+
concrete_args = {"max_depth": 1, "n_bits": 3, "n_estimators": 3, "n_jobs": -1}
|
| 57 |
+
classifier = ConcreteXGBoostClassifier(**concrete_args)
|
| 58 |
+
classifier.fit(X_train, y_train)
|
| 59 |
+
circuit = classifier.compile(X_train)
|
| 60 |
+
|
| 61 |
+
return classifier, circuit
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def key_gen():
|
| 65 |
+
|
| 66 |
+
# Key serialization
|
| 67 |
+
user_id = np.random.randint(0, 2**32)
|
| 68 |
+
|
| 69 |
+
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
|
| 70 |
+
client.load()
|
| 71 |
+
|
| 72 |
+
# The client first need to create the private and evaluation keys.
|
| 73 |
+
|
| 74 |
+
client.generate_private_and_evaluation_keys()
|
| 75 |
+
|
| 76 |
+
# Get the serialized evaluation keys
|
| 77 |
+
serialized_evaluation_keys = client.get_serialized_evaluation_keys()
|
| 78 |
+
assert isinstance(serialized_evaluation_keys, bytes)
|
| 79 |
+
|
| 80 |
+
np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
|
| 81 |
+
|
| 82 |
+
serialized_evaluation_keys_shorten = list(serialized_evaluation_keys)[:200]
|
| 83 |
+
serialized_evaluation_keys_shorten_hex = "".join(
|
| 84 |
+
f"{i:02x}" for i in serialized_evaluation_keys_shorten
|
| 85 |
+
)
|
| 86 |
+
# Evaluation keys can be quite large files but only have to be shared once with the server.
|
| 87 |
+
|
| 88 |
+
# Check the size of the evaluation keys (in MB)
|
| 89 |
+
return [
|
| 90 |
+
serialized_evaluation_keys_shorten_hex,
|
| 91 |
+
user_id,
|
| 92 |
+
f"{len(serialized_evaluation_keys) / (10**6):.2f} MB",
|
| 93 |
+
]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def encode_quantize_encrypt(user_symptoms, user_id):
|
| 97 |
+
# check if the key has been generated
|
| 98 |
+
client = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
|
| 99 |
+
client.load()
|
| 100 |
+
|
| 101 |
+
user_symptoms = np.fromstring(user_symptoms[2:-2], dtype=int, sep=".").reshape(1, -1)
|
| 102 |
+
|
| 103 |
+
quant_user_symptoms = client.model.quantize_input(user_symptoms)
|
| 104 |
+
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
|
| 105 |
+
|
| 106 |
+
# print(client.model.predict(vect_x, fhe="simulate"), client.model.predict(vect_x, fhe="execute"))
|
| 107 |
+
# pred_s = client.model.fhe_circuit.simulate(quant_vect)
|
| 108 |
+
# pred_fhe = client.model.fhe_circuit.encrypt_run_decrypt(quant_vect) #
|
| 109 |
+
# non alpha -> \X1124, base64 ou en exa
|
| 110 |
+
|
| 111 |
+
# Compute size
|
| 112 |
+
|
| 113 |
+
np.save(f".fhe_keys/{user_id}/encrypted_quant_vect.npy", encrypted_quantized_user_symptoms)
|
| 114 |
+
|
| 115 |
+
encrypted_quantized_encoding_shorten = list(encrypted_quantized_user_symptoms)[:200]
|
| 116 |
+
encrypted_quantized_encoding_shorten_hex = "".join(
|
| 117 |
+
f"{i:02x}" for i in encrypted_quantized_encoding_shorten
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
return user_symptoms, quant_user_symptoms, encrypted_quantized_encoding_shorten_hex
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def decrypt_prediction(encrypted_quantized_vect, user_id):
|
| 124 |
+
fhe_api = FHEModelClient(path_dir=path_to_model, key_dir=f".fhe_keys/{user_id}")
|
| 125 |
+
fhe_api.load()
|
| 126 |
+
fhe_api.generate_private_and_evaluation_keys(force=False)
|
| 127 |
+
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_quantized_vect)
|
| 128 |
+
return predictions
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def get_user_vect_symptoms_from_checkboxgroup(*user_symptoms) -> np.array:
|
| 132 |
+
symptoms_vector = {key: 0 for key in valid_columns}
|
| 133 |
+
|
| 134 |
+
for symptom_box in user_symptoms:
|
| 135 |
+
for pretty_symptom in symptom_box:
|
| 136 |
+
symptom = "_".join((pretty_symptom.lower().split(" ")))
|
| 137 |
+
if symptom not in symptoms_vector.keys():
|
| 138 |
+
raise KeyError(
|
| 139 |
+
f"The symptom '{symptom}' you provided is not recognized as a valid "
|
| 140 |
+
f"symptom.\nHere is the list of valid symptoms: {symptoms_vector}"
|
| 141 |
+
)
|
| 142 |
+
symptoms_vector[symptom] = 1.0
|
| 143 |
+
|
| 144 |
+
user_symptoms_vect = np.fromiter(symptoms_vector.values(), dtype=float)[np.newaxis, :]
|
| 145 |
+
|
| 146 |
+
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
|
| 147 |
+
|
| 148 |
+
return user_symptoms_vect
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def get_user_vect_symptoms_from_default_disease(disease):
|
| 152 |
+
|
| 153 |
+
user_symptom_vector = df_test[df_test["prognosis"] == disease].iloc[0].values
|
| 154 |
+
|
| 155 |
+
user_symptoms_vect = np.fromiter(user_symptom_vector[:-2], dtype=float)[np.newaxis, :]
|
| 156 |
+
|
| 157 |
+
assert all(value == 0 or value == 1 for value in user_symptoms_vect.flatten())
|
| 158 |
+
|
| 159 |
+
return user_symptoms_vect
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def get_user_symptoms_from_default_disease(disease):
|
| 163 |
+
df_filtred = df_test[df_test["prognosis"] == disease]
|
| 164 |
+
columns_with_1 = df_filtred.columns[df_filtred.eq(1).any()].to_list()
|
| 165 |
+
return pretty_print(columns_with_1)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def get_user_symptoms_vector(selected_default_disease, *selected_symptoms):
|
| 169 |
+
|
| 170 |
+
if any(lst for lst in selected_symptoms if lst) and (
|
| 171 |
+
selected_default_disease is not None and len(selected_default_disease) > 0
|
| 172 |
+
):
|
| 173 |
+
# If the user has already selected a disease and added more symptoms, raise an error
|
| 174 |
+
if set(pretty_print(selected_symptoms)) - set(
|
| 175 |
+
get_user_symptoms_from_default_disease(selected_default_disease)
|
| 176 |
+
):
|
| 177 |
+
return {
|
| 178 |
+
user_vector_textbox: gr.update(value="An error occurs"),
|
| 179 |
+
error_box: gr.update(
|
| 180 |
+
visible=True, value="Enter a default disease or select your own symptoms"
|
| 181 |
+
),
|
| 182 |
+
}
|
| 183 |
+
# If the user has not selected a default disease or symptoms, an error is raised.
|
| 184 |
+
if not any(lst for lst in selected_symptoms if lst) and (
|
| 185 |
+
selected_default_disease is None
|
| 186 |
+
or (selected_default_disease is not None and len(selected_default_disease) < 1)
|
| 187 |
+
):
|
| 188 |
+
return {
|
| 189 |
+
user_vector_textbox: gr.update(value="An error occurs"),
|
| 190 |
+
error_box: gr.update(
|
| 191 |
+
visible=True, value="Enter a default disease or select your own symptoms"
|
| 192 |
+
),
|
| 193 |
+
}
|
| 194 |
+
# Case 1: The user has checked his own symptoms
|
| 195 |
+
if any(lst for lst in selected_symptoms if lst):
|
| 196 |
+
return {
|
| 197 |
+
user_vector_textbox: get_user_vect_symptoms_from_checkboxgroup(*selected_symptoms),
|
| 198 |
+
}
|
| 199 |
+
|
| 200 |
+
# Case 2: The user has selected a default disease
|
| 201 |
+
if selected_default_disease is not None and len(selected_default_disease) > 0:
|
| 202 |
+
return {
|
| 203 |
+
user_vector_textbox: get_user_vect_symptoms_from_default_disease(
|
| 204 |
+
selected_default_disease
|
| 205 |
+
),
|
| 206 |
+
error_box: gr.update(visible=False),
|
| 207 |
+
**{
|
| 208 |
+
box: get_user_symptoms_from_default_disease(selected_default_disease)
|
| 209 |
+
for box in check_boxes
|
| 210 |
+
},
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def clear_all_buttons():
|
| 215 |
+
return {
|
| 216 |
+
user_id_textbox: None,
|
| 217 |
+
eval_key_textbox: None,
|
| 218 |
+
eval_key_len_textbox: None,
|
| 219 |
+
user_vector_textbox: None,
|
| 220 |
+
box_default: None,
|
| 221 |
+
error_box: gr.update(visible=False),
|
| 222 |
+
**{box: None for box in check_boxes},
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
print("Starting demo ...")
|
| 228 |
+
|
| 229 |
+
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
|
| 230 |
+
|
| 231 |
+
valid_columns = X_train.columns.to_list()
|
| 232 |
+
|
| 233 |
+
with gr.Blocks() as demo:
|
| 234 |
+
|
| 235 |
+
# Link + images
|
| 236 |
+
gr.Markdown(
|
| 237 |
+
"""
|
| 238 |
+
<p align="center">
|
| 239 |
+
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
| 240 |
+
</p>
|
| 241 |
+
|
| 242 |
+
<h2 align="center">Health Prediction On Encrypted Data Using Homomorphic Encryption.</h2>
|
| 243 |
+
|
| 244 |
+
<p align="center">
|
| 245 |
+
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
| 246 |
+
—
|
| 247 |
+
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
|
| 248 |
+
—
|
| 249 |
+
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
|
| 250 |
+
—
|
| 251 |
+
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
|
| 252 |
+
</p>
|
| 253 |
+
|
| 254 |
+
<p align="center">
|
| 255 |
+
<img src="https://raw.githubusercontent.com/kcelia/Img/main/demo-img2.png" width="60%" height="60%">
|
| 256 |
+
</p>
|
| 257 |
+
"""
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
# Gentle introduction
|
| 261 |
+
gr.Markdown("## Introduction")
|
| 262 |
+
gr.Markdown("""Blablabla""")
|
| 263 |
+
|
| 264 |
+
# User symptoms
|
| 265 |
+
gr.Markdown("# Step 1: Provide your symptoms")
|
| 266 |
+
gr.Markdown("Client side")
|
| 267 |
+
|
| 268 |
+
# Default disease, picked from the dataframe
|
| 269 |
+
with gr.Row():
|
| 270 |
+
default_diseases = list(set(df_test["prognosis"]))
|
| 271 |
+
box_default = gr.Dropdown(default_diseases, label="Disease")
|
| 272 |
+
|
| 273 |
+
# Box symptoms
|
| 274 |
+
check_boxes = []
|
| 275 |
+
for i, category in enumerate(SYMPTOMS_LIST):
|
| 276 |
+
check_box = gr.CheckboxGroup(
|
| 277 |
+
pretty_print(category.values()),
|
| 278 |
+
label=pretty_print(category.keys()),
|
| 279 |
+
info=f"Symptoms related to `{pretty_print(category.values())}`",
|
| 280 |
+
max_batch_size=45,
|
| 281 |
+
)
|
| 282 |
+
check_boxes.append(check_box)
|
| 283 |
+
|
| 284 |
+
# User symptom vector
|
| 285 |
+
with gr.Row():
|
| 286 |
+
user_vector_textbox = gr.Textbox(
|
| 287 |
+
label="User symptoms (vector)",
|
| 288 |
+
interactive=False,
|
| 289 |
+
max_lines=100,
|
| 290 |
+
)
|
| 291 |
+
error_box = gr.Textbox(label="Error", visible=False)
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
# Submit botton
|
| 295 |
+
with gr.Column():
|
| 296 |
+
submit_button = gr.Button("Submit")
|
| 297 |
+
# Clear botton
|
| 298 |
+
with gr.Column():
|
| 299 |
+
clear_button = gr.Button("Clear", style="background-color: yellow;")
|
| 300 |
+
|
| 301 |
+
# Click submit botton
|
| 302 |
+
|
| 303 |
+
submit_button.click(
|
| 304 |
+
fn=get_user_symptoms_vector,
|
| 305 |
+
inputs=[box_default, *check_boxes],
|
| 306 |
+
outputs=[user_vector_textbox, error_box, *check_boxes],
|
| 307 |
+
)
|
| 308 |
+
# Load the model
|
| 309 |
+
concrete_classifier = load(
|
| 310 |
+
open("ConcreteRandomForestClassifier.pkl", "r", encoding="utf-8")
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
gr.Markdown("# Step 2: Generate the keys")
|
| 314 |
+
gr.Markdown("Client side")
|
| 315 |
+
|
| 316 |
+
gen_key = gr.Button("Generate the keys and send public part to server")
|
| 317 |
+
|
| 318 |
+
with gr.Row():
|
| 319 |
+
# User ID
|
| 320 |
+
with gr.Column(scale=1, min_width=600):
|
| 321 |
+
user_id_textbox = gr.Textbox(
|
| 322 |
+
label="User ID:",
|
| 323 |
+
max_lines=4,
|
| 324 |
+
interactive=False,
|
| 325 |
+
)
|
| 326 |
+
# Evaluation key size
|
| 327 |
+
with gr.Column(scale=1, min_width=600):
|
| 328 |
+
eval_key_len_textbox = gr.Textbox(
|
| 329 |
+
label="Evaluation key size:", max_lines=4, interactive=False
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
with gr.Row():
|
| 333 |
+
# Evaluation key (truncated)
|
| 334 |
+
with gr.Column(scale=2, min_width=600):
|
| 335 |
+
eval_key_textbox = gr.Textbox(
|
| 336 |
+
label="Evaluation key (truncated):",
|
| 337 |
+
max_lines=4,
|
| 338 |
+
interactive=False,
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
gen_key.click(key_gen, outputs=[eval_key_textbox, user_id_textbox, eval_key_len_textbox])
|
| 342 |
+
|
| 343 |
+
clear_button.click(
|
| 344 |
+
clear_all_buttons,
|
| 345 |
+
outputs=[
|
| 346 |
+
user_id_textbox,
|
| 347 |
+
user_vector_textbox,
|
| 348 |
+
eval_key_textbox,
|
| 349 |
+
eval_key_len_textbox,
|
| 350 |
+
box_default,
|
| 351 |
+
error_box,
|
| 352 |
+
*check_boxes,
|
| 353 |
+
],
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
gr.Markdown("# Step 3: Encode the message with the private key")
|
| 357 |
+
gr.Markdown("Client side")
|
| 358 |
+
|
| 359 |
+
encode_msg = gr.Button("Generate the keys and send public part to server")
|
| 360 |
+
|
| 361 |
+
with gr.Row():
|
| 362 |
+
|
| 363 |
+
with gr.Column(scale=1, min_width=600):
|
| 364 |
+
vect_textbox = gr.Textbox(
|
| 365 |
+
label="Vector:",
|
| 366 |
+
max_lines=4,
|
| 367 |
+
interactive=False,
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
with gr.Column(scale=1, min_width=600):
|
| 371 |
+
quant_vect_textbox = gr.Textbox(
|
| 372 |
+
label="Quant vector:", max_lines=4, interactive=False
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
with gr.Column(scale=1, min_width=600):
|
| 376 |
+
encrypted_vect_textbox = gr.Textbox(
|
| 377 |
+
label="Encrypted vector:", max_lines=4, interactive=False
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
encode_msg.click(
|
| 381 |
+
encode_quantize_encrypt,
|
| 382 |
+
inputs=[user_vector_textbox, user_id_textbox],
|
| 383 |
+
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox],
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
gr.Markdown("# Step 4: Run the FHE evaluation")
|
| 387 |
+
gr.Markdown("Server side")
|
| 388 |
+
|
| 389 |
+
run_fhe = gr.Button("Run the FHE evaluation")
|
| 390 |
+
|
| 391 |
+
gr.Markdown("# Step 5: Decrypt the sentiment")
|
| 392 |
+
gr.Markdown("Server side")
|
| 393 |
+
|
| 394 |
+
decrypt_target_botton = gr.Button("Decrypt the sentiment")
|
| 395 |
+
decrypt_target_textbox = gr.Textbox(
|
| 396 |
+
label="Encrypted vector:", max_lines=4, interactive=False
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
decrypt_target_botton.click(
|
| 400 |
+
decrypt_prediction,
|
| 401 |
+
inputs=[encrypted_vect_textbox, user_id_textbox],
|
| 402 |
+
outputs=[decrypt_target_textbox],
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
demo.launch()
|
client_folder/client.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d74f69c8847ee0c4d1d1828eea2d81ae0e9f20de866bb8536d391541d68c8f04
|
| 3 |
+
size 89862
|
client_folder/server.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3240edb4a0f896e56a7a077bf7ebc83a23003c96f96c5096cc80898152053f5b
|
| 3 |
+
size 1778
|
client_folder/versions.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"concrete-ml": "1.0.0rc2", "concrete-python": "1.0.0", "python": "3.10.6"}
|
preprocessing.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Preliminary preprocessing on the data, such as:
|
| 3 |
+
- correcting column names
|
| 4 |
+
- encoding the target column
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from sklearn import preprocessing
|
| 9 |
+
|
| 10 |
+
COLUMNS_TO_DROP = ["Unnamed: 133"]
|
| 11 |
+
TARGET_COLUMN = ["prognosis"]
|
| 12 |
+
RENAME_COLUMNS = {
|
| 13 |
+
"scurring": "scurving",
|
| 14 |
+
"dischromic _patches": "dischromic_patches",
|
| 15 |
+
"spotting_ urination": "spotting_urination",
|
| 16 |
+
"foul_smell_of urine": "foul_smell_of_urine",
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def pretty_print(input):
|
| 21 |
+
"""
|
| 22 |
+
Prettify the input.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
input: Can be a list of symtoms or a disease.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
list: Sorted and prettified input.
|
| 29 |
+
"""
|
| 30 |
+
# Convert to a list if necessary
|
| 31 |
+
if isinstance(input, list):
|
| 32 |
+
input = list(input)
|
| 33 |
+
|
| 34 |
+
# Flatten the list if required
|
| 35 |
+
pretty_list = []
|
| 36 |
+
for item in input:
|
| 37 |
+
if isinstance(item, list):
|
| 38 |
+
pretty_list.extend(item)
|
| 39 |
+
else:
|
| 40 |
+
pretty_list.append(item)
|
| 41 |
+
|
| 42 |
+
# Sort and prettify the input
|
| 43 |
+
pretty_list = sorted([" ".join((item.split("_"))).title() for item in pretty_list])
|
| 44 |
+
|
| 45 |
+
return pretty_list
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def map_prediction(target_columns=["y", "prognosis"]):
|
| 49 |
+
df = pd.read_csv("Training_preprocessed.csv")
|
| 50 |
+
relevent_df = df[target_columns].drop_duplicates().relevent_df.where(df["y"] == 1)
|
| 51 |
+
prediction = relevent_df[target_columns[1]].dropna().values[0]
|
| 52 |
+
return prediction
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
|
| 57 |
+
# Load data
|
| 58 |
+
df_train = pd.read_csv("Training.csv")
|
| 59 |
+
df_test = pd.read_csv("Testing.csv")
|
| 60 |
+
|
| 61 |
+
# Remove unseless columns
|
| 62 |
+
df_train.drop(columns=COLUMNS_TO_DROP, axis=1, errors="ignore", inplace=True)
|
| 63 |
+
df_test.drop(columns=COLUMNS_TO_DROP, axis=1, errors="ignore", inplace=True)
|
| 64 |
+
|
| 65 |
+
# Correct some typos in some columns name
|
| 66 |
+
df_train.rename(columns=RENAME_COLUMNS, inplace=True)
|
| 67 |
+
df_test.rename(columns=RENAME_COLUMNS, inplace=True)
|
| 68 |
+
|
| 69 |
+
# Convert y category labels to y
|
| 70 |
+
label_encoder = preprocessing.LabelEncoder()
|
| 71 |
+
label_encoder.fit(df_train[TARGET_COLUMN].values.flatten())
|
| 72 |
+
|
| 73 |
+
df_train["y"] = label_encoder.transform(df_train[TARGET_COLUMN].values.flatten())
|
| 74 |
+
df_test["y"] = label_encoder.transform(df_test[TARGET_COLUMN].values.flatten())
|
| 75 |
+
|
| 76 |
+
# Cast X features from int64 to float32
|
| 77 |
+
float_columns = df_train.columns.drop(TARGET_COLUMN)
|
| 78 |
+
df_train[float_columns] = df_train[float_columns].astype("float32")
|
| 79 |
+
df_test[float_columns] = df_test[float_columns].astype("float32")
|
| 80 |
+
|
| 81 |
+
# Save preprocessed data
|
| 82 |
+
df_train.to_csv(path_or_buf="Training_preprocessed.csv", index=False)
|
| 83 |
+
df_test.to_csv(path_or_buf="Testing_preprocessed.csv", index=False)
|
server.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Server that will listen for GET and POST requests from the client."""
|
| 2 |
+
|
| 3 |
+
import time
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import List
|
| 6 |
+
|
| 7 |
+
from fastapi import FastAPI, File, Form, UploadFile
|
| 8 |
+
from fastapi.responses import JSONResponse, Response
|
| 9 |
+
|
| 10 |
+
from concrete.ml.deployment import FHEModelServer
|
| 11 |
+
|
| 12 |
+
# Initialize an instance of FastAPI
|
| 13 |
+
app = FastAPI()
|
| 14 |
+
|
| 15 |
+
current_dir = Path(__file__).parent
|
| 16 |
+
|
| 17 |
+
# Load the model
|
| 18 |
+
fhe_model = FHEModelServer(Path.joinpath(current_dir, "./client_folder"))
|
| 19 |
+
|
| 20 |
+
# Define the default route
|
| 21 |
+
@app.get("/")
|
| 22 |
+
def root():
|
| 23 |
+
return {"message": "Welcome to Your disease prediction with fhe !"}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@app.post("/send_input")
|
| 27 |
+
def send_input(
|
| 28 |
+
user_id: str = Form(),
|
| 29 |
+
filter: str = Form(),
|
| 30 |
+
files: List[UploadFile] = File(),
|
| 31 |
+
):
|
| 32 |
+
"""Send the inputs to the server."""
|
| 33 |
+
# Retrieve the encrypted input image and the evaluation key paths
|
| 34 |
+
encrypted_image_path = 0 # Tcurrent_dir("encrypted_image", user_id, filter)
|
| 35 |
+
evaluation_key_path = current_dir / ".fhe_keys/{user_id}"
|
| 36 |
+
|
| 37 |
+
# Write the files using the above paths
|
| 38 |
+
with encrypted_image_path.open("wb") as encrypted_image, evaluation_key_path.open(
|
| 39 |
+
"wb"
|
| 40 |
+
) as evaluation_key:
|
| 41 |
+
encrypted_image.write(files[0].file.read())
|
| 42 |
+
evaluation_key.write(files[1].file.read())
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@app.post("/run_fhe")
|
| 46 |
+
def run_fhe(
|
| 47 |
+
user_id: str = Form(),
|
| 48 |
+
filter: str = Form(),
|
| 49 |
+
):
|
| 50 |
+
"""Execute the filter on the encrypted input image using FHE."""
|
| 51 |
+
# Retrieve the encrypted input image and the evaluation key paths
|
| 52 |
+
encrypted_image_path = get_server_file_path("encrypted_image", user_id, filter)
|
| 53 |
+
evaluation_key_path = get_server_file_path("evaluation_key", user_id, filter)
|
| 54 |
+
|
| 55 |
+
# Read the files using the above paths
|
| 56 |
+
with encrypted_image_path.open("rb") as encrypted_image_file, evaluation_key_path.open(
|
| 57 |
+
"rb"
|
| 58 |
+
) as evaluation_key_file:
|
| 59 |
+
encrypted_image = encrypted_image_file.read()
|
| 60 |
+
evaluation_key = evaluation_key_file.read()
|
| 61 |
+
|
| 62 |
+
# Load the FHE server
|
| 63 |
+
fhe_server = FHEServer(FILTERS_PATH / f"{filter}/deployment")
|
| 64 |
+
|
| 65 |
+
# Run the FHE execution
|
| 66 |
+
start = time.time()
|
| 67 |
+
encrypted_output_image = fhe_server.run(encrypted_image, evaluation_key)
|
| 68 |
+
fhe_execution_time = round(time.time() - start, 2)
|
| 69 |
+
|
| 70 |
+
# Retrieve the encrypted output image path
|
| 71 |
+
encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
|
| 72 |
+
|
| 73 |
+
# Write the file using the above path
|
| 74 |
+
with encrypted_output_path.open("wb") as encrypted_output:
|
| 75 |
+
encrypted_output.write(encrypted_output_image)
|
| 76 |
+
|
| 77 |
+
return JSONResponse(content=fhe_execution_time)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
@app.post("/get_output")
|
| 81 |
+
def get_output(
|
| 82 |
+
user_id: str = Form(),
|
| 83 |
+
filter: str = Form(),
|
| 84 |
+
):
|
| 85 |
+
"""Retrieve the encrypted output image."""
|
| 86 |
+
# Retrieve the encrypted output image path
|
| 87 |
+
encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
|
| 88 |
+
|
| 89 |
+
# Read the file using the above path
|
| 90 |
+
with encrypted_output_path.open("rb") as encrypted_output_file:
|
| 91 |
+
encrypted_output = encrypted_output_file.read()
|
| 92 |
+
|
| 93 |
+
return Response(encrypted_output)
|
symptoms_categories.py
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
In this file, we roughly split up a list of symptoms, taken from "./training.csv" file, avalaible
|
| 3 |
+
through: "https://github.com/anujdutt9/Disease-Prediction-from-Symptoms/tree/master/dataset"
|
| 4 |
+
into medical categories, in order to make the UI more plesant for the users.
|
| 5 |
+
|
| 6 |
+
Each variable contains a list of symptoms sthat can be pecific to a part of the body or to a list
|
| 7 |
+
of similar symptoms.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
import itertools
|
| 11 |
+
|
| 12 |
+
import pandas as pd
|
| 13 |
+
|
| 14 |
+
DIGESTIVE_SYSTEM_SYPTOMS = {
|
| 15 |
+
"Digestive system syptoms": [
|
| 16 |
+
"stomach_pain",
|
| 17 |
+
"acidity",
|
| 18 |
+
"vomiting",
|
| 19 |
+
"indigestion",
|
| 20 |
+
"constipation",
|
| 21 |
+
"abdominal_pain",
|
| 22 |
+
"diarrhoea",
|
| 23 |
+
"belly_pain",
|
| 24 |
+
"nausea",
|
| 25 |
+
"distention_of_abdomen",
|
| 26 |
+
"stomach_bleeding",
|
| 27 |
+
"pain_during_bowel_movements",
|
| 28 |
+
"passage_of_gases",
|
| 29 |
+
"brittle_nails",
|
| 30 |
+
"red_spots_over_body",
|
| 31 |
+
"swelling_of_stomach",
|
| 32 |
+
"bloody_stool",
|
| 33 |
+
"yellowish_skin",
|
| 34 |
+
"irritation_in_anus",
|
| 35 |
+
"pain_in_anal_region",
|
| 36 |
+
"abnormal_menstruation",
|
| 37 |
+
]
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
SKIN_SYPTOMS = {
|
| 41 |
+
"Skin related symptoms": [
|
| 42 |
+
"itching",
|
| 43 |
+
"skin_rash",
|
| 44 |
+
"pus_filled_pimples",
|
| 45 |
+
"blackheads",
|
| 46 |
+
"scurving",
|
| 47 |
+
"skin_peeling",
|
| 48 |
+
"silver_like_dusting",
|
| 49 |
+
"small_dents_in_nails",
|
| 50 |
+
"inflammatory_nails",
|
| 51 |
+
"blister",
|
| 52 |
+
"red_sore_around_nose",
|
| 53 |
+
"bruising",
|
| 54 |
+
"yellow_crust_ooze",
|
| 55 |
+
"dischromic_patches",
|
| 56 |
+
"nodal_skin_eruptions",
|
| 57 |
+
]
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
ORL_SYPTOMS = {
|
| 61 |
+
"ORL_SYPTOMS": [
|
| 62 |
+
"loss_of_smell",
|
| 63 |
+
"continuous_sneezing",
|
| 64 |
+
"runny_nose",
|
| 65 |
+
"patches_in_throat",
|
| 66 |
+
"throat_irritation",
|
| 67 |
+
"sinus_pressure",
|
| 68 |
+
"enlarged_thyroid",
|
| 69 |
+
"loss_of_balance",
|
| 70 |
+
"unsteadiness",
|
| 71 |
+
"dizziness",
|
| 72 |
+
"spinning_movements",
|
| 73 |
+
]
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
THORAX_SYMPTOMS = {
|
| 77 |
+
"THORAX_RELATED_SYMPTOMS": [
|
| 78 |
+
"breathlessness",
|
| 79 |
+
"chest_pain",
|
| 80 |
+
"cough",
|
| 81 |
+
"rusty_sputum",
|
| 82 |
+
"phlegm",
|
| 83 |
+
"mucoid_sputum",
|
| 84 |
+
"congestion",
|
| 85 |
+
"blood_in_sputum",
|
| 86 |
+
"fast_heart_rate",
|
| 87 |
+
]
|
| 88 |
+
}
|
| 89 |
+
|
| 90 |
+
EYES_SYMPTOMS = {
|
| 91 |
+
"Eyes_related_symptoms": [
|
| 92 |
+
"sunken_eyes",
|
| 93 |
+
"redness_of_eyes",
|
| 94 |
+
"watering_from_eyes",
|
| 95 |
+
"blurred_and_distorted_vision",
|
| 96 |
+
"pain_behind_the_eyes",
|
| 97 |
+
"visual_disturbances",
|
| 98 |
+
]
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
VASCULAR_LYMPHATIC_SYMPTOMS = {
|
| 102 |
+
"VASCULAR_LYMPHATIC_SYMPTOMS": [
|
| 103 |
+
"cold_hands_and_feets",
|
| 104 |
+
"swollen_blood_vessels",
|
| 105 |
+
"swollen_legs",
|
| 106 |
+
"swelled_lymph_nodes",
|
| 107 |
+
"palpitations",
|
| 108 |
+
"prominent_veins_on_calf",
|
| 109 |
+
"yellowing_of_eyes",
|
| 110 |
+
"puffy_face_and_eyes",
|
| 111 |
+
"fluid_overload",
|
| 112 |
+
"fluid_overload.1",
|
| 113 |
+
"swollen_extremeties",
|
| 114 |
+
]
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
UROLOGICAL_SYMPTOMS = {
|
| 118 |
+
"UROLOGICAL_SYMPTOMS": [
|
| 119 |
+
"burning_micturition",
|
| 120 |
+
"spotting_urination",
|
| 121 |
+
"yellow_urine",
|
| 122 |
+
"bladder_discomfort",
|
| 123 |
+
"foul_smell_of_urine",
|
| 124 |
+
"continuous_feel_of_urine",
|
| 125 |
+
"polyuria",
|
| 126 |
+
"dark_urine",
|
| 127 |
+
]
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
MUSCULOSKELETAL_SYMPTOMS = {
|
| 131 |
+
"MUSCULOSKELETAL_SYMPTOMS": [
|
| 132 |
+
"joint_pain",
|
| 133 |
+
"muscle_wasting",
|
| 134 |
+
"muscle_pain",
|
| 135 |
+
"muscle_weakness",
|
| 136 |
+
"knee_pain",
|
| 137 |
+
"stiff_neck",
|
| 138 |
+
"swelling_joints",
|
| 139 |
+
"movement_stiffness",
|
| 140 |
+
"hip_joint_pain",
|
| 141 |
+
"painful_walking",
|
| 142 |
+
"weakness_of_one_body_side",
|
| 143 |
+
"neck_pain",
|
| 144 |
+
"back_pain",
|
| 145 |
+
"weakness_in_limbs",
|
| 146 |
+
"cramps",
|
| 147 |
+
]
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
FEELING_SYMPTOMS = {
|
| 151 |
+
"FEELING_SYPTOMS": [
|
| 152 |
+
"anxiety",
|
| 153 |
+
"restlessness",
|
| 154 |
+
"lethargy",
|
| 155 |
+
"mood_swings",
|
| 156 |
+
"depression",
|
| 157 |
+
"irritability",
|
| 158 |
+
"lack_of_concentration",
|
| 159 |
+
"fatigue",
|
| 160 |
+
"malaise",
|
| 161 |
+
"weight_gain",
|
| 162 |
+
"increased_appetite",
|
| 163 |
+
"weight_loss",
|
| 164 |
+
"loss_of_appetite",
|
| 165 |
+
"obesity",
|
| 166 |
+
"excessive_hunger",
|
| 167 |
+
]
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
OTHER_SYPTOMS = {
|
| 171 |
+
"OTHER_SYPTOMS": [
|
| 172 |
+
"ulcers_on_tongue",
|
| 173 |
+
"shivering",
|
| 174 |
+
"chills",
|
| 175 |
+
"irregular_sugar_level",
|
| 176 |
+
"high_fever",
|
| 177 |
+
"slurred_speech",
|
| 178 |
+
"sweating",
|
| 179 |
+
"internal_itching",
|
| 180 |
+
"mild_fever",
|
| 181 |
+
"toxic_look_(typhos)",
|
| 182 |
+
"acute_liver_failure",
|
| 183 |
+
"dehydration",
|
| 184 |
+
"headache",
|
| 185 |
+
"extra_marital_contacts",
|
| 186 |
+
"drying_and_tingling_lips",
|
| 187 |
+
"altered_sensorium",
|
| 188 |
+
]
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
PATIENT_HISTORY = {
|
| 192 |
+
"PATIENT_HISTORY": [
|
| 193 |
+
"family_history",
|
| 194 |
+
"receiving_blood_transfusion",
|
| 195 |
+
"receiving_unsterile_injections",
|
| 196 |
+
"history_of_alcohol_consumption",
|
| 197 |
+
"coma",
|
| 198 |
+
]
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
SYMPTOMS_LIST = [
|
| 202 |
+
SKIN_SYPTOMS,
|
| 203 |
+
EYES_SYMPTOMS,
|
| 204 |
+
ORL_SYPTOMS,
|
| 205 |
+
THORAX_SYMPTOMS,
|
| 206 |
+
DIGESTIVE_SYSTEM_SYPTOMS,
|
| 207 |
+
UROLOGICAL_SYMPTOMS,
|
| 208 |
+
VASCULAR_LYMPHATIC_SYMPTOMS,
|
| 209 |
+
MUSCULOSKELETAL_SYMPTOMS,
|
| 210 |
+
FEELING_SYMPTOMS,
|
| 211 |
+
PATIENT_HISTORY,
|
| 212 |
+
OTHER_SYPTOMS,
|
| 213 |
+
]
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def test(file_path="./Training.csv"):
|
| 217 |
+
df = pd.read_csv(file_path, index_col=0)
|
| 218 |
+
valid_column = df.columns
|
| 219 |
+
all_symptoms = [category.values() for category in SYMPTOMS_LIST]
|
| 220 |
+
all_symptoms = list(itertools.chain.from_iterable(all_symptoms))
|
| 221 |
+
all_symptoms = list(itertools.chain.from_iterable(all_symptoms))
|
| 222 |
+
set(valid_column) - set(all_symptoms), set(all_symptoms) - set(valid_column)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
if __name__ == "__main__":
|
| 226 |
+
test()
|