|
"""A Gradio app for anonymizing text data using FHE.""" |
|
|
|
import gradio as gr |
|
from fhe_anonymizer import FHEAnonymizer |
|
import pandas as pd |
|
from openai import OpenAI |
|
import os |
|
import json |
|
import re |
|
from utils_demo import * |
|
from typing import List, Dict, Tuple |
|
|
|
anonymizer = FHEAnonymizer() |
|
|
|
client = OpenAI( |
|
api_key=os.environ.get("openaikey"), |
|
) |
|
|
|
|
|
def check_user_query_fn(user_query: str) -> Dict: |
|
if is_user_query_valid(user_query): |
|
|
|
error_msg = ("Unable to process β: The request exceeds the length limit or falls " |
|
"outside the scope of this document. Please refine your query.") |
|
print(error_msg) |
|
return {input_text: gr.update(value=error_msg)} |
|
else: |
|
|
|
return {input_text: gr.update(value=re.sub(" +", " ", user_query))} |
|
|
|
def deidentify_text(input_text): |
|
anonymized_text, identified_words_with_prob = anonymizer(input_text) |
|
|
|
|
|
if identified_words_with_prob: |
|
identified_df = pd.DataFrame( |
|
identified_words_with_prob, columns=["Identified Words", "Probability"] |
|
) |
|
else: |
|
identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) |
|
return anonymized_text, identified_df |
|
|
|
|
|
def query_chatgpt(anonymized_query): |
|
|
|
with open("files/anonymized_document.txt", "r") as file: |
|
anonymized_document = file.read() |
|
with open("files/chatgpt_prompt.txt", "r") as file: |
|
prompt = file.read() |
|
|
|
|
|
full_prompt = ( |
|
prompt + "\n" |
|
) |
|
query = "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" |
|
print(full_prompt) |
|
|
|
completion = client.chat.completions.create( |
|
model="gpt-4-1106-preview", |
|
messages=[ |
|
{"role": "system", "content": prompt}, |
|
{"role": "user", "content": query}, |
|
], |
|
) |
|
anonymized_response = completion.choices[0].message.content |
|
with open("original_document_uuid_mapping.json", "r") as file: |
|
uuid_map = json.load(file) |
|
inverse_uuid_map = {v: k for k, v in uuid_map.items()} |
|
|
|
|
|
token_pattern = r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)" |
|
tokens = re.findall(token_pattern, anonymized_response) |
|
processed_tokens = [] |
|
|
|
|
|
for token in tokens: |
|
|
|
if not token.strip() or not re.match(r"\w+", token): |
|
processed_tokens.append(token) |
|
continue |
|
|
|
if token in inverse_uuid_map: |
|
processed_tokens.append(inverse_uuid_map[token]) |
|
else: |
|
processed_tokens.append(token) |
|
deanonymized_response = "".join(processed_tokens) |
|
return anonymized_response, deanonymized_response |
|
|
|
|
|
with open("files/original_document.txt", "r") as file: |
|
original_document = file.read() |
|
|
|
with open("files/anonymized_document.txt", "r") as file: |
|
anonymized_document = file.read() |
|
|
|
demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") |
|
|
|
with demo: |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width=200 src="file/images/logos/zama.jpg"> |
|
</p> |
|
<h1 style="text-align: center;">Encrypted Anonymization Using Fully Homomorphic Encryption</h1> |
|
<p align="center"> |
|
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/github.png">Concrete-ML</a> |
|
β |
|
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/documentation.png">Documentation</a> |
|
β |
|
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/community.png">Community</a> |
|
β |
|
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="file/images/logos/x.png">@zama_fhe</a> |
|
</p> |
|
""" |
|
) |
|
|
|
gr.Markdown( |
|
""" |
|
<p align="center"> |
|
<img width="30%" height="25%" src="./encrypted_anonymization_diagram.jpg"> |
|
</p> |
|
""" |
|
) |
|
|
|
|
|
with gr.Accordion("What is Encrypted Anonymization?", open=False): |
|
gr.Markdown( |
|
""" |
|
Encrypted Anonymization leverages Fully Homomorphic Encryption (FHE) to protect sensitive information during data processing. This approach allows for the anonymization of text data, such as personal identifiers, while ensuring that the data remains encrypted throughout the entire process. |
|
""" |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Original Document", open=True): |
|
gr.Markdown(original_document) |
|
|
|
with gr.Accordion("Anonymized Document", open=True): |
|
gr.Markdown(anonymized_document) |
|
|
|
|
|
|
|
|
|
with gr.Row(): |
|
input_text = gr.Textbox(value="Who lives in Maine?", label="User query", interactive=True) |
|
|
|
default_query_box = gr.Radio(choices=list(DEFAULT_QUERIES.keys()), label="Example Queries") |
|
|
|
default_query_box.change( |
|
fn=lambda default_query_box: DEFAULT_QUERIES[default_query_box], |
|
inputs=[default_query_box], |
|
outputs=[input_text] |
|
) |
|
|
|
input_text.change( |
|
check_user_query_fn, |
|
inputs=[input_text], |
|
outputs=[input_text], |
|
) |
|
|
|
anonymized_text_output = gr.Textbox(label="Anonymized Text with FHE", lines=1, interactive=True) |
|
|
|
identified_words_output = gr.Dataframe(label="Identified Words", visible=False) |
|
|
|
submit_button = gr.Button("Anonymize with FHE") |
|
|
|
submit_button.click( |
|
deidentify_text, |
|
inputs=[input_text], |
|
outputs=[anonymized_text_output, identified_words_output], |
|
) |
|
|
|
with gr.Row(): |
|
chatgpt_response_anonymized = gr.Textbox(label="ChatGPT Anonymized Response", lines=13) |
|
chatgpt_response_deanonymized = gr.Textbox(label="ChatGPT Deanonymized Response", lines=13) |
|
|
|
chatgpt_button = gr.Button("Query ChatGPT") |
|
chatgpt_button.click( |
|
query_chatgpt, |
|
inputs=[anonymized_text_output], |
|
outputs=[chatgpt_response_anonymized, chatgpt_response_deanonymized], |
|
) |
|
|
|
|
|
demo.launch(share=False) |
|
|