import gradio as gr import numpy as np import random from PIL import Image import os import spaces from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, StableDiffusionImg2ImgPipeline import torch from huggingface_hub import login # Get token from Hugging Face Spaces secrets # This will use the environment variable HF_ACCESS_TOKEN which is the standard in HF Spaces hf_token = os.environ.get("HF_ACCESS_TOKEN") if hf_token: login(hf_token) else: print("Warning: HF_ACCESS_TOKEN not found in environment. Authentication may fail.") device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/stable-diffusion-3.5-medium" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 # For text-to-image pipe = DiffusionPipeline.from_pretrained( model_repo_id, torch_dtype=torch_dtype, use_auth_token=True # This will use the token from login() ) pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( model_repo_id, subfolder="scheduler", shift=5, use_auth_token=True ) pipe = pipe.to(device) # For image-to-image img2img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained( model_repo_id, torch_dtype=torch_dtype, use_auth_token=True ) img2img_pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained( model_repo_id, subfolder="scheduler", shift=5, use_auth_token=True ) img2img_pipe = img2img_pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=65) def infer( prompt, negative_prompt="", seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=1.5, num_inference_steps=8, input_image=None, strength=0.8, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # Text-to-image if no input image is provided if input_image is None: image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] # Image-to-image if an input image is provided else: # Convert to PIL Image if it's a numpy array if isinstance(input_image, np.ndarray): input_image = Image.fromarray(input_image) # Resize image to match requested dimensions input_image = input_image.resize((width, height), Image.LANCZOS) image = img2img_pipe( prompt=prompt, negative_prompt=negative_prompt, image=input_image, strength=strength, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, ).images[0] return image, seed examples = [ "A capybara wearing a suit holding a sign that reads Hello World", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # TensorArt Stable Diffusion 3.5 Large TurboX") gr.Markdown( "[8-step distilled turbo model](https://huggingface.co/tensorart/stable-diffusion-3.5-large-TurboX)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") # Add image upload component input_image = gr.Image( label="Input Image (Optional)", type="pil", sources=["upload", "clipboard"], ) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=7.5, step=0.1, value=1.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=8, ) # Add strength parameter for image-to-image strength = gr.Slider( label="Strength (for image-to-image)", minimum=0.0, maximum=1.0, step=0.01, value=0.8, info="How much to transform the reference image. 1.0 means complete transformation." ) gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy") gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, input_image, strength, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()