File size: 11,708 Bytes
f0ae490
a9c9440
 
a735de3
 
a9c9440
 
 
 
a735de3
548989b
a9c9440
 
 
1aceaa0
a735de3
 
ed6f29c
e076e33
 
 
 
a9c9440
e076e33
 
 
a9c9440
 
 
e076e33
a9c9440
 
e076e33
a9c9440
 
 
 
 
 
 
 
 
 
e076e33
a9c9440
 
 
 
 
 
 
 
1aceaa0
a9c9440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e076e33
a9c9440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ae490
548989b
 
a9c9440
 
f0ae490
e076e33
a9c9440
 
 
 
 
 
 
 
e076e33
a9c9440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a735de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ae490
 
a9c9440
 
 
f0ae490
a735de3
f0ae490
 
 
 
 
 
a735de3
 
 
 
 
 
f0ae490
a735de3
 
 
f0ae490
 
 
a735de3
 
 
f0ae490
 
a735de3
 
 
f0ae490
a9c9440
f0ae490
 
a9c9440
f0ae490
 
a735de3
 
 
 
f0ae490
a735de3
 
 
a9c9440
a735de3
 
f0ae490
a735de3
79d57f6
a735de3
 
f0ae490
 
 
a735de3
 
 
 
f0ae490
 
548989b
a9c9440
f0ae490
548989b
a9c9440
 
775ce61
 
3c9fd16
 
 
a9c9440
a735de3
a9c9440
1aceaa0
f0ae490
a9c9440
 
 
 
 
 
 
 
548989b
1aceaa0
f0ae490
 
 
548989b
a735de3
 
a9c9440
 
 
548989b
a9c9440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aceaa0
a9c9440
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import copy
import os
import re
import subprocess
import tempfile
import threading
from pathlib import Path
import fitz
import gradio as gr
import time
import html
import torch
from transformers import AutoProcessor, Glm4vForConditionalGeneration, TextIteratorStreamer
import spaces

MODEL_PATH = "THUDM/GLM-4.1V-9B-Thinking"
stop_generation = False

processor = AutoProcessor.from_pretrained(MODEL_PATH, use_fast=True)
model = Glm4vForConditionalGeneration.from_pretrained(
    MODEL_PATH,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)


class GLM4VModel:
    def _strip_html(self, text: str) -> str:
        return re.sub(r"<[^>]+>", "", text).strip()

    def _wrap_text(self, text: str):
        return [{"type": "text", "text": text}]

    def _pdf_to_imgs(self, pdf_path):
        doc = fitz.open(pdf_path)
        imgs = []
        for i in range(doc.page_count):
            pix = doc.load_page(i).get_pixmap(dpi=180)
            img_p = os.path.join(tempfile.gettempdir(), f"{Path(pdf_path).stem}_{i}.png")
            pix.save(img_p)
            imgs.append(img_p)
        doc.close()
        return imgs

    def _ppt_to_imgs(self, ppt_path):
        tmp = tempfile.mkdtemp()
        subprocess.run(
            ["libreoffice", "--headless", "--convert-to", "pdf", "--outdir", tmp, ppt_path],
            check=True,
        )
        pdf_path = os.path.join(tmp, Path(ppt_path).stem + ".pdf")
        return self._pdf_to_imgs(pdf_path)

    def _files_to_content(self, media):
        out = []
        for f in media or []:
            ext = Path(f.name).suffix.lower()
            if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
                out.append({"type": "video", "url": f.name})
            elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
                out.append({"type": "image", "url": f.name})
            elif ext in [".ppt", ".pptx"]:
                for p in self._ppt_to_imgs(f.name):
                    out.append({"type": "image", "url": p})
            elif ext == ".pdf":
                for p in self._pdf_to_imgs(f.name):
                    out.append({"type": "image", "url": p})
        return out

    def _stream_fragment(self, buf: str, skip_think: bool = False):
        think_html = ""
        if "<think>" in buf and not skip_think:
            if "</think>" in buf:
                seg = re.search(r"<think>(.*?)</think>", buf, re.DOTALL)
                if seg:
                    think_content = seg.group(1).strip().replace("\\n", "\n").replace("\n", "<br>")
                    think_html = (
                            "<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>💭 Thinking</summary>"
                            "<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>"
                            + think_content
                            + "</div></details>"
                    )
            else:
                part = buf.split("<think>", 1)[1]
                think_content = part.replace("\\n", "\n").replace("\n", "<br>")
                think_html = (
                        "<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>💭 Thinking</summary>"
                        "<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>"
                        + think_content
                        + "</div></details>"
                )

        answer_html = ""
        if "<answer>" in buf:
            if "</answer>" in buf:
                seg = re.search(r"<answer>(.*?)</answer>", buf, re.DOTALL)
                if seg:
                    answer_html = seg.group(1).strip()
            else:
                answer_html = buf.split("<answer>", 1)[1]

        if answer_html:
            answer_html_raw = answer_html.replace("\\n", "\n")
            if '<' in answer_html_raw and '>' in answer_html_raw:
                escaped = html.escape(answer_html_raw)
                answer_html = f"<pre class='code-block'><code class='language-html'>{escaped}</code></pre>"
            else:
                answer_html = f"<div style='margin:0.5em 0; white-space: pre-wrap; line-height:1.6;'>{html.escape(answer_html_raw)}</div>"

        if not think_html and not answer_html:
            return self._strip_html(buf)
        return think_html + answer_html

    def _build_messages(self, raw_hist, sys_prompt):
        msgs = []
        if sys_prompt.strip():
            msgs.append({"role": "system", "content": [{"type": "text", "text": sys_prompt.strip()}]})
        for h in raw_hist:
            if h["role"] == "user":
                msgs.append({"role": "user", "content": h["content"]})
            else:
                raw = re.sub(r"<think>.*?</think>", "", h["content"], flags=re.DOTALL)
                raw = re.sub(r"<details.*?</details>", "", raw, flags=re.DOTALL)
                msgs.append({"role": "assistant", "content": self._wrap_text(self._strip_html(raw).strip())})
        return msgs

    @spaces.GPU(duration=120)
    def stream_generate(self, raw_hist, sys_prompt: str):
        global stop_generation
        stop_generation = False
        msgs = self._build_messages(raw_hist, sys_prompt)
        inputs = processor.apply_chat_template(
            msgs,
            tokenize=True,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
            padding=True,
        ).to(model.device)
        streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=False)
        gen_kwargs = dict(
            inputs,
            max_new_tokens=8192,
            repetition_penalty=1.1,
            do_sample=True,
            top_k=2,
            temperature=0.01,
            streamer=streamer,
        )
        thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buf = ""
        for tok in streamer:
            if stop_generation:
                break
            buf += tok
            yield self._stream_fragment(buf)
        thread.join()


def format_display_content(content):
    if isinstance(content, list):
        text_parts = []
        file_count = 0
        for item in content:
            if item["type"] == "text":
                text_parts.append(item["text"])
            else:
                file_count += 1
        display_text = " ".join(text_parts)
        if file_count > 0:
            return f"[{file_count} file(s) uploaded]\n{display_text}"
        return display_text
    return content


def create_display_history(raw_hist):
    display_hist = []
    for h in raw_hist:
        if h["role"] == "user":
            display_content = format_display_content(h["content"])
            display_hist.append({"role": "user", "content": display_content})
        else:
            display_hist.append({"role": "assistant", "content": h["content"]})
    return display_hist


glm4v = GLM4VModel()


def check_files(files):
    vids = imgs = ppts = pdfs = 0
    for f in files or []:
        ext = Path(f.name).suffix.lower()
        if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
            vids += 1
        elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
            imgs += 1
        elif ext in [".ppt", ".pptx"]:
            ppts += 1
        elif ext == ".pdf":
            pdfs += 1
    if vids > 1 or ppts > 1 or pdfs > 1:
        return False, "Only one video or one PPT or one PDF allowed"
    if imgs > 10:
        return False, "Maximum 10 images allowed"
    if (ppts or pdfs) and (vids or imgs) or (vids and imgs):
        return False, "Cannot mix documents, videos, and images"
    return True, ""


def chat(files, msg, raw_hist, sys_prompt):
    global stop_generation
    stop_generation = False
    ok, err = check_files(files)
    if not ok:
        raw_hist.append({"role": "assistant", "content": err})
        display_hist = create_display_history(raw_hist)
        yield display_hist, copy.deepcopy(raw_hist), None, ""
        return
    payload = glm4v._files_to_content(files) if files else None
    if msg.strip():
        if payload is None:
            payload = glm4v._wrap_text(msg.strip())
        else:
            payload.append({"type": "text", "text": msg.strip()})
    user_rec = {"role": "user", "content": payload if payload else msg.strip()}
    if raw_hist is None:
        raw_hist = []
    raw_hist.append(user_rec)
    place = {"role": "assistant", "content": ""}
    raw_hist.append(place)
    display_hist = create_display_history(raw_hist)
    yield display_hist, copy.deepcopy(raw_hist), None, ""
    for chunk in glm4v.stream_generate(raw_hist[:-1], sys_prompt):
        if stop_generation:
            break
        place["content"] = chunk
        display_hist = create_display_history(raw_hist)
        yield display_hist, copy.deepcopy(raw_hist), None, ""
    display_hist = create_display_history(raw_hist)
    yield display_hist, copy.deepcopy(raw_hist), None, ""


def reset():
    global stop_generation
    stop_generation = True
    time.sleep(0.1)
    return [], [], None, ""


demo = gr.Blocks(title="GLM-4.1V-9B-Thinking", theme=gr.themes.Soft())

with demo:
    gr.Markdown(
        "<div style='text-align:center;font-size:32px;font-weight:bold;margin-bottom:20px;'>GLM-4.1V-9B-Thinking</div>"
        "<div style='text-align:center;'><a href='https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking'>Model Hub</a> | "
        "<a href='https://github.com/THUDM/GLM-4.1V-Thinking'>Github</a> |"
        "<a href='https://arxiv.org/abs/2507.01006'>Paper</a> |"
        "<a href='https://www.bigmodel.cn/dev/api/visual-reasoning-model/GLM-4.1V-Thinking'>API</a> </div>"
        "<div style='text-align:center;color:gray;font-size:14px;margin-top:10px;'>This demo runs on local GPU for faster experience. For the API version, visit <a href='https://huggingface.co/spaces/THUDM/GLM-4.1V-9B-Thinking-API-Demo' target='_blank'>this Space</a>.</div>"

    )
    raw_history = gr.State([])

    with gr.Row():
        with gr.Column(scale=7):
            chatbox = gr.Chatbot(
                label="Chat",
                type="messages",
                height=600,
                elem_classes="chatbot-container",
                sanitize_html=False,
                line_breaks=True
            )
            textbox = gr.Textbox(label="Message", lines=3)
            with gr.Row():
                send = gr.Button("Send", variant="primary")
                clear = gr.Button("Clear")
        with gr.Column(scale=3):
            up = gr.File(label="Upload Files", file_count="multiple", file_types=["file"], type="filepath")
            gr.Markdown("Supports images / videos / PPT / PDF")
            gr.Markdown(
                "The maximum supported input is 10 images or 1 video/PPT/PDF(less than 10 pages) in this demo. "
                "During the conversation, video and images cannot be present at the same time."
            )
            sys = gr.Textbox(label="System Prompt", lines=6)

    send.click(
        chat,
        inputs=[up, textbox, raw_history, sys],
        outputs=[chatbox, raw_history, up, textbox]
    )
    textbox.submit(
        chat,
        inputs=[up, textbox, raw_history, sys],
        outputs=[chatbox, raw_history, up, textbox]
    )
    clear.click(
        reset,
        outputs=[chatbox, raw_history, up, textbox]
    )

if __name__ == "__main__":
    demo.launch()