Spaces:
Running
on
Zero
Running
on
Zero
Add video2video (#9)
Browse files- Add video2video (d111c40220c69e8820d058033b900755ba147d18)
- Update requirements.txt (972faf55db7487399e56796378ed8362f09820ec)
- Upload horse.mp4 (d691db5813f07aa3070b293cfdbedb1646ea7528)
- Update app.py (b7be49644d6927de88c6182455d8d62968ab0d4f)
- Upload 3 files (958d6a30bc64a0dce9cda92eff6c9b4ee982faa6)
Co-authored-by: Apolinário from multimodal AI art <[email protected]>
- .gitattributes +1 -0
- app.py +124 -16
- horse.mp4 +3 -0
- kitten.mp4 +0 -0
- requirements.txt +1 -1
- train_running.mp4 +0 -0
.gitattributes
CHANGED
|
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
models/RealESRGAN_x4.pth filter=lfs diff=lfs merge=lfs -text
|
| 37 |
models/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
models/RealESRGAN_x4.pth filter=lfs diff=lfs merge=lfs -text
|
| 37 |
models/flownet.pkl filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
horse.mp4 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -4,9 +4,16 @@ import random
|
|
| 4 |
import threading
|
| 5 |
import time
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
-
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler,CogVideoXDPMScheduler
|
|
|
|
| 10 |
from datetime import datetime, timedelta
|
| 11 |
|
| 12 |
from diffusers.image_processor import VaeImageProcessor
|
|
@@ -27,6 +34,8 @@ pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timest
|
|
| 27 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 28 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 29 |
|
|
|
|
|
|
|
| 30 |
os.makedirs("./output", exist_ok=True)
|
| 31 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
| 32 |
|
|
@@ -46,6 +55,76 @@ Other times the user will not want modifications , but instead want a new image
|
|
| 46 |
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
| 47 |
"""
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
| 51 |
if not os.environ.get("OPENAI_API_KEY"):
|
|
@@ -96,9 +175,10 @@ def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
|
| 96 |
return response.choices[0].message.content
|
| 97 |
return prompt
|
| 98 |
|
| 99 |
-
|
| 100 |
def infer(
|
| 101 |
prompt: str,
|
|
|
|
|
|
|
| 102 |
num_inference_steps: int,
|
| 103 |
guidance_scale: float,
|
| 104 |
seed: int = -1,
|
|
@@ -106,16 +186,30 @@ def infer(
|
|
| 106 |
):
|
| 107 |
if seed == -1:
|
| 108 |
seed = random.randint(0, 2 ** 8 - 1)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
return (video_pt, seed)
|
| 121 |
|
|
@@ -146,6 +240,7 @@ def delete_old_files():
|
|
| 146 |
|
| 147 |
|
| 148 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
|
|
|
| 149 |
|
| 150 |
with gr.Blocks() as demo:
|
| 151 |
gr.Markdown("""
|
|
@@ -170,6 +265,10 @@ with gr.Blocks() as demo:
|
|
| 170 |
""")
|
| 171 |
with gr.Row():
|
| 172 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
| 174 |
|
| 175 |
with gr.Row():
|
|
@@ -265,14 +364,18 @@ with gr.Blocks() as demo:
|
|
| 265 |
|
| 266 |
|
| 267 |
def generate(prompt,
|
|
|
|
|
|
|
| 268 |
seed_value,
|
| 269 |
scale_status,
|
| 270 |
rife_status,
|
| 271 |
-
progress=gr.Progress(track_tqdm=True)
|
| 272 |
):
|
| 273 |
|
| 274 |
latents, seed = infer(
|
| 275 |
prompt,
|
|
|
|
|
|
|
| 276 |
num_inference_steps=50, # NOT Changed
|
| 277 |
guidance_scale=7.0, # NOT Changed
|
| 278 |
seed=seed_value,
|
|
@@ -308,12 +411,17 @@ with gr.Blocks() as demo:
|
|
| 308 |
|
| 309 |
generate_button.click(
|
| 310 |
generate,
|
| 311 |
-
inputs=[prompt, seed_param, enable_scale, enable_rife],
|
| 312 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
| 313 |
)
|
| 314 |
|
| 315 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
| 316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 317 |
if __name__ == "__main__":
|
| 318 |
demo.queue(max_size=15)
|
| 319 |
-
demo.launch()
|
|
|
|
| 4 |
import threading
|
| 5 |
import time
|
| 6 |
|
| 7 |
+
import cv2
|
| 8 |
+
import numpy as np
|
| 9 |
+
import tempfile
|
| 10 |
+
import imageio
|
| 11 |
+
import imageio_ffmpeg
|
| 12 |
+
|
| 13 |
import gradio as gr
|
| 14 |
import torch
|
| 15 |
+
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler,CogVideoXDPMScheduler, CogVideoXVideoToVideoPipeline
|
| 16 |
+
from diffusers.utils import export_to_video, load_video
|
| 17 |
from datetime import datetime, timedelta
|
| 18 |
|
| 19 |
from diffusers.image_processor import VaeImageProcessor
|
|
|
|
| 34 |
pipe.transformer.to(memory_format=torch.channels_last)
|
| 35 |
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 36 |
|
| 37 |
+
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained("THUDM/CogVideoX-5b", transformer=pipe.transformer, vae=pipe.vae, scheduler=pipe.scheduler, tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder, torch_dtype=torch.bfloat16)
|
| 38 |
+
|
| 39 |
os.makedirs("./output", exist_ok=True)
|
| 40 |
os.makedirs("./gradio_tmp", exist_ok=True)
|
| 41 |
|
|
|
|
| 55 |
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
|
| 56 |
"""
|
| 57 |
|
| 58 |
+
def resize_if_unfit(input_video, progress=gr.Progress(track_tqdm=True)):
|
| 59 |
+
width, height = get_video_dimensions(input_video)
|
| 60 |
+
|
| 61 |
+
if width == 720 and height == 480:
|
| 62 |
+
processed_video = input_video
|
| 63 |
+
else:
|
| 64 |
+
processed_video = center_crop_resize(input_video)
|
| 65 |
+
return processed_video
|
| 66 |
+
|
| 67 |
+
def get_video_dimensions(input_video_path):
|
| 68 |
+
reader = imageio_ffmpeg.read_frames(input_video_path)
|
| 69 |
+
metadata = next(reader)
|
| 70 |
+
return metadata['size']
|
| 71 |
+
|
| 72 |
+
def center_crop_resize(input_video_path, target_width=720, target_height=480):
|
| 73 |
+
cap = cv2.VideoCapture(input_video_path)
|
| 74 |
+
|
| 75 |
+
orig_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 76 |
+
orig_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 77 |
+
orig_fps = cap.get(cv2.CAP_PROP_FPS)
|
| 78 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 79 |
+
|
| 80 |
+
width_factor = target_width / orig_width
|
| 81 |
+
height_factor = target_height / orig_height
|
| 82 |
+
resize_factor = max(width_factor, height_factor)
|
| 83 |
+
|
| 84 |
+
inter_width = int(orig_width * resize_factor)
|
| 85 |
+
inter_height = int(orig_height * resize_factor)
|
| 86 |
+
|
| 87 |
+
target_fps = 8
|
| 88 |
+
ideal_skip = max(0, math.ceil(orig_fps / target_fps) - 1)
|
| 89 |
+
skip = min(5, ideal_skip) # Cap at 5
|
| 90 |
+
|
| 91 |
+
while (total_frames / (skip + 1)) < 49 and skip > 0:
|
| 92 |
+
skip -= 1
|
| 93 |
+
|
| 94 |
+
processed_frames = []
|
| 95 |
+
frame_count = 0
|
| 96 |
+
total_read = 0
|
| 97 |
+
|
| 98 |
+
while frame_count < 49 and total_read < total_frames:
|
| 99 |
+
ret, frame = cap.read()
|
| 100 |
+
if not ret:
|
| 101 |
+
break
|
| 102 |
+
|
| 103 |
+
if total_read % (skip + 1) == 0:
|
| 104 |
+
resized = cv2.resize(frame, (inter_width, inter_height), interpolation=cv2.INTER_AREA)
|
| 105 |
+
|
| 106 |
+
start_x = (inter_width - target_width) // 2
|
| 107 |
+
start_y = (inter_height - target_height) // 2
|
| 108 |
+
cropped = resized[start_y:start_y+target_height, start_x:start_x+target_width]
|
| 109 |
+
|
| 110 |
+
processed_frames.append(cropped)
|
| 111 |
+
frame_count += 1
|
| 112 |
+
|
| 113 |
+
total_read += 1
|
| 114 |
+
|
| 115 |
+
cap.release()
|
| 116 |
+
|
| 117 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
|
| 118 |
+
temp_video_path = temp_file.name
|
| 119 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 120 |
+
out = cv2.VideoWriter(temp_video_path, fourcc, target_fps, (target_width, target_height))
|
| 121 |
+
|
| 122 |
+
for frame in processed_frames:
|
| 123 |
+
out.write(frame)
|
| 124 |
+
|
| 125 |
+
out.release()
|
| 126 |
+
|
| 127 |
+
return temp_video_path
|
| 128 |
|
| 129 |
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
|
| 130 |
if not os.environ.get("OPENAI_API_KEY"):
|
|
|
|
| 175 |
return response.choices[0].message.content
|
| 176 |
return prompt
|
| 177 |
|
|
|
|
| 178 |
def infer(
|
| 179 |
prompt: str,
|
| 180 |
+
video_input: str,
|
| 181 |
+
video_strenght: float,
|
| 182 |
num_inference_steps: int,
|
| 183 |
guidance_scale: float,
|
| 184 |
seed: int = -1,
|
|
|
|
| 186 |
):
|
| 187 |
if seed == -1:
|
| 188 |
seed = random.randint(0, 2 ** 8 - 1)
|
| 189 |
+
if(video_input):
|
| 190 |
+
video = load_video(video_input)[:49] # Limit to 49 frames
|
| 191 |
+
video_pt = pipe_video(
|
| 192 |
+
video=video,
|
| 193 |
+
prompt=prompt,
|
| 194 |
+
num_inference_steps=num_inference_steps,
|
| 195 |
+
num_videos_per_prompt=1,
|
| 196 |
+
strength=video_strenght,
|
| 197 |
+
use_dynamic_cfg=True,
|
| 198 |
+
output_type="pt",
|
| 199 |
+
guidance_scale=guidance_scale,
|
| 200 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 201 |
+
).frames
|
| 202 |
+
else:
|
| 203 |
+
video_pt = pipe(
|
| 204 |
+
prompt=prompt,
|
| 205 |
+
num_videos_per_prompt=1,
|
| 206 |
+
num_inference_steps=num_inference_steps,
|
| 207 |
+
num_frames=49,
|
| 208 |
+
use_dynamic_cfg=True,
|
| 209 |
+
output_type="pt",
|
| 210 |
+
guidance_scale=guidance_scale,
|
| 211 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
| 212 |
+
).frames
|
| 213 |
|
| 214 |
return (video_pt, seed)
|
| 215 |
|
|
|
|
| 240 |
|
| 241 |
|
| 242 |
threading.Thread(target=delete_old_files, daemon=True).start()
|
| 243 |
+
examples = [["horse.mp4"], ["kitten.mp4"], ["train_running.mp4"]]
|
| 244 |
|
| 245 |
with gr.Blocks() as demo:
|
| 246 |
gr.Markdown("""
|
|
|
|
| 265 |
""")
|
| 266 |
with gr.Row():
|
| 267 |
with gr.Column():
|
| 268 |
+
with gr.Accordion("Video-to-video", open=False):
|
| 269 |
+
video_input = gr.Video(label="Input Video (will be cropped to 49 frames, 6 seconds at 8fps)")
|
| 270 |
+
strength = gr.Slider(0.1, 1.0, value=0.8, step=0.01, label="Strength")
|
| 271 |
+
examples_component = gr.Examples(examples, inputs=[video_input], cache_examples=False)
|
| 272 |
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
|
| 273 |
|
| 274 |
with gr.Row():
|
|
|
|
| 364 |
|
| 365 |
|
| 366 |
def generate(prompt,
|
| 367 |
+
video_input,
|
| 368 |
+
video_strenght,
|
| 369 |
seed_value,
|
| 370 |
scale_status,
|
| 371 |
rife_status,
|
| 372 |
+
#progress=gr.Progress(track_tqdm=True)
|
| 373 |
):
|
| 374 |
|
| 375 |
latents, seed = infer(
|
| 376 |
prompt,
|
| 377 |
+
video_input,
|
| 378 |
+
video_strenght,
|
| 379 |
num_inference_steps=50, # NOT Changed
|
| 380 |
guidance_scale=7.0, # NOT Changed
|
| 381 |
seed=seed_value,
|
|
|
|
| 411 |
|
| 412 |
generate_button.click(
|
| 413 |
generate,
|
| 414 |
+
inputs=[prompt, video_input, strength, seed_param, enable_scale, enable_rife],
|
| 415 |
outputs=[video_output, download_video_button, download_gif_button, seed_text],
|
| 416 |
)
|
| 417 |
|
| 418 |
enhance_button.click(enhance_prompt_func, inputs=[prompt], outputs=[prompt])
|
| 419 |
+
|
| 420 |
+
video_input.upload(
|
| 421 |
+
resize_if_unfit,
|
| 422 |
+
inputs=[video_input],
|
| 423 |
+
outputs=[video_input]
|
| 424 |
+
)
|
| 425 |
if __name__ == "__main__":
|
| 426 |
demo.queue(max_size=15)
|
| 427 |
+
demo.launch()
|
horse.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3c857bbc0d197c0751db9d6da9b5c85eafd163511ff9b0e10be65adf8ef9e352
|
| 3 |
+
size 453387
|
kitten.mp4
ADDED
|
Binary file (882 kB). View file
|
|
|
requirements.txt
CHANGED
|
@@ -4,7 +4,7 @@ spandrel>=0.3.4
|
|
| 4 |
tqdm>=4.66.5
|
| 5 |
opencv-python>=4.10.0.84
|
| 6 |
scikit-video>=1.1.11
|
| 7 |
-
diffusers
|
| 8 |
transformers>=4.44.0
|
| 9 |
accelerate>=0.33.0
|
| 10 |
sentencepiece>=0.2.0
|
|
|
|
| 4 |
tqdm>=4.66.5
|
| 5 |
opencv-python>=4.10.0.84
|
| 6 |
scikit-video>=1.1.11
|
| 7 |
+
git+https://github.com/huggingface/diffusers.git@3b5977dc29577cacbfec1d74221df4e28259a9bc
|
| 8 |
transformers>=4.44.0
|
| 9 |
accelerate>=0.33.0
|
| 10 |
sentencepiece>=0.2.0
|
train_running.mp4
ADDED
|
Binary file (577 kB). View file
|
|
|