z4hid commited on
Commit
2275a4b
·
verified ·
1 Parent(s): f001195

api code changed

Browse files
Files changed (1) hide show
  1. src/serve.py +22 -36
src/serve.py CHANGED
@@ -1,68 +1,54 @@
 
 
 
1
  from PIL import Image
2
- from torchvision import transforms
3
  import torch
 
4
  import os
5
- from fastapi import FastAPI, HTTPException
6
- from fastapi.responses import JSONResponse
7
- from io import BytesIO
8
-
9
- # from dotenv import load_dotenv
10
- from .model import MalwareNet, malware_classes # assuming malware_classes contains class names
11
-
12
- # load_dotenv()
13
 
14
  app = FastAPI()
15
 
16
- # Preprocessing function for the model
17
- def preprocess_image(image_path):
18
- image = Image.open(image_path).convert("RGB")
19
  preprocess = transforms.Compose([
20
- transforms.Resize((224, 224)), # Resize to the input size expected by the model
21
- transforms.ToTensor(), # Convert to tensor
22
- transforms.Normalize( # Normalize using model's requirements (e.g. ImageNet)
23
- mean=[0.485, 0.456, 0.406],
24
- std=[0.229, 0.224, 0.225]
25
- )
26
  ])
27
- return preprocess(image).unsqueeze(0) # Add batch dimension
28
 
29
- # Load model and its weights
30
  def load_model():
31
  model = MalwareNet()
32
  base_dir = os.path.dirname(os.path.abspath(__file__))
33
- model_location = os.path.join(base_dir, '../model/malwareNet.pt') # Relative path to the model file
34
  state_dict = torch.load(model_location, map_location=torch.device('cpu'), weights_only=True)
35
  model.load_state_dict(state_dict)
36
- model.eval() # Set the model to evaluation mode
37
  return model
38
 
39
- @app.get("/")
40
- def status():
41
- return {"status": "ok"}
42
-
43
  @app.post("/predict")
44
- async def predict(data: dict):
45
- image_path = data.get("image_url")
46
- if not os.path.exists(image_path):
47
- raise HTTPException(status_code=400, detail="Image path does not exist.")
48
-
49
  try:
50
- # Load and preprocess the image
51
- img_tensor = preprocess_image(image_path)
 
 
 
52
 
53
  # Load the model and make the prediction
54
  model = load_model()
55
- with torch.no_grad(): # No gradient calculation is needed
56
  prediction = model(img_tensor)
57
 
58
  # Get the predicted class
59
  predicted_class = malware_classes[torch.argmax(prediction).item()]
60
 
61
- return JSONResponse(content={"image": image_path, "prediction": predicted_class})
62
-
63
  except Exception as e:
64
  raise HTTPException(status_code=500, detail=f"Error processing the image: {e}")
65
 
 
66
  if __name__ == "__main__":
67
  import uvicorn
68
  uvicorn.run(
 
1
+ from fastapi import FastAPI, HTTPException, File, UploadFile
2
+ from fastapi.responses import JSONResponse
3
+ from io import BytesIO
4
  from PIL import Image
 
5
  import torch
6
+ from torchvision import transforms
7
  import os
8
+ from .model import MalwareNet, malware_classes
 
 
 
 
 
 
 
9
 
10
  app = FastAPI()
11
 
12
+ def preprocess_image(image_data):
13
+ image = Image.open(BytesIO(image_data)).convert("RGB")
 
14
  preprocess = transforms.Compose([
15
+ transforms.Resize((224, 224)),
16
+ transforms.ToTensor(),
17
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
 
 
 
18
  ])
19
+ return preprocess(image).unsqueeze(0)
20
 
 
21
  def load_model():
22
  model = MalwareNet()
23
  base_dir = os.path.dirname(os.path.abspath(__file__))
24
+ model_location = os.path.join(base_dir, '../model/malwareNet.pt')
25
  state_dict = torch.load(model_location, map_location=torch.device('cpu'), weights_only=True)
26
  model.load_state_dict(state_dict)
27
+ model.eval()
28
  return model
29
 
 
 
 
 
30
  @app.post("/predict")
31
+ async def predict(file: UploadFile = File(...)):
 
 
 
 
32
  try:
33
+ # Read file bytes
34
+ image_data = await file.read()
35
+
36
+ # Preprocess the image
37
+ img_tensor = preprocess_image(image_data)
38
 
39
  # Load the model and make the prediction
40
  model = load_model()
41
+ with torch.no_grad():
42
  prediction = model(img_tensor)
43
 
44
  # Get the predicted class
45
  predicted_class = malware_classes[torch.argmax(prediction).item()]
46
 
47
+ return JSONResponse(content={"prediction": predicted_class})
 
48
  except Exception as e:
49
  raise HTTPException(status_code=500, detail=f"Error processing the image: {e}")
50
 
51
+
52
  if __name__ == "__main__":
53
  import uvicorn
54
  uvicorn.run(