Spaces:
Runtime error
Runtime error
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """TODO: Add a description here.""" | |
| import evaluate | |
| import datasets | |
| # TODO: Add BibTeX citation | |
| _CITATION = """\ | |
| @inproceedings{deng2021compression, | |
| title={Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation}, | |
| author={Deng, Mingkai and Tan, Bowen and Liu, Zhengzhong and Xing, Eric and Hu, Zhiting}, | |
| booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, | |
| pages={7580--7605}, | |
| year={2021} | |
| } | |
| """ | |
| # TODO: Add description of the module here | |
| _DESCRIPTION = """\ | |
| This repo contains code of an automatic evaluation metric described in the paper | |
| Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation | |
| """ | |
| # TODO: Add description of the arguments of the module here | |
| _KWARGS_DESCRIPTION = """ | |
| Calculates how good are predictions given some references, using certain scores | |
| Args: | |
| predictions: List of texts (Hypothesis) to score. The list now only supports one piece of text | |
| references: List of texts (Premise) to score. The list now only supports one piece of text | |
| Returns: | |
| ctc_score: The CTC score | |
| Examples: | |
| >>> ctc_score = evaluate.load("yzha/ctc_eval") | |
| >>> results = ctc_score.compute(references=['hello world'], predictions='hi world') | |
| >>> print(results) | |
| {'ctc_score': 0.5211202502250671} | |
| """ | |
| # TODO: Define external resources urls if needed | |
| BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" | |
| class CTC_Eval(evaluate.EvaluationModule): | |
| """TODO: Short description of my evaluation module.""" | |
| def _info(self): | |
| # TODO: Specifies the evaluate.EvaluationModuleInfo object | |
| return evaluate.EvaluationModuleInfo( | |
| # This is the description that will appear on the modules page. | |
| module_type="metric", | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| # This defines the format of each prediction and reference | |
| features=datasets.Features({ | |
| 'predictions': datasets.Value('large_string'), | |
| 'references': datasets.Value('large_string'), | |
| }), | |
| # Homepage of the module for documentation | |
| homepage="https://github.com/tanyuqian/ctc-gen-eval", | |
| # Additional links to the codebase or references | |
| codebase_urls=["https://github.com/tanyuqian/ctc-gen-eval"], | |
| reference_urls=["https://github.com/tanyuqian/ctc-gen-eval"] | |
| ) | |
| def _download_and_prepare(self, dl_manager): | |
| """Optional: download external resources useful to compute the scores""" | |
| # TODO: Download external resources if needed | |
| import nltk | |
| nltk.download('stopwords') | |
| import subprocess | |
| import sys | |
| def install(package): | |
| subprocess.check_call([sys.executable, "-m", "pip", "install", package]) | |
| install('ctc-score') | |
| from ctc_score import StyleTransferScorer, SummarizationScorer, DialogScorer | |
| self.scorer = SummarizationScorer(align='D-cnndm') | |
| def _compute(self, predictions, references): | |
| """Returns the scores""" | |
| # TODO: Compute the different scores of the module | |
| assert len(predictions) == len(references) | |
| print('computing...') | |
| print(predictions) | |
| print(references) | |
| ctc_score = self.scorer.score(doc=references[0], refs=[], hypo=predictions[0], aspect='consistency') | |
| return { | |
| "ctc_score": ctc_score | |
| } |