File size: 14,846 Bytes
a166479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Bowen Cheng from: https://github.com/facebookresearch/detr/blob/master/models/detr.py
import fvcore.nn.weight_init as weight_init
from typing import Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F

from .position_encoding import PositionEmbeddingSine

class SelfAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt,
                     tgt_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)

        return tgt

    def forward_pre(self, tgt,
                    tgt_mask: Optional[Tensor] = None,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        
        return tgt

    def forward(self, tgt,
                tgt_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, tgt_mask,
                                    tgt_key_padding_mask, query_pos)
        return self.forward_post(tgt, tgt_mask,
                                 tgt_key_padding_mask, query_pos)


class CrossAttentionLayer(nn.Module):

    def __init__(self, d_model, nhead, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.norm = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     memory_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        
        return tgt

    def forward_pre(self, tgt, memory,
                    memory_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout(tgt2)

        return tgt

    def forward(self, tgt, memory,
                memory_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, memory_mask,
                                    memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, memory_mask,
                                 memory_key_padding_mask, pos, query_pos)


class FFNLayer(nn.Module):

    def __init__(self, d_model, dim_feedforward=2048, dropout=0.0,
                 activation="relu", normalize_before=False):
        super().__init__()
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm = nn.LayerNorm(d_model)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

        self._reset_parameters()
    
    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt):
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout(tgt2)
        tgt = self.norm(tgt)
        return tgt

    def forward_pre(self, tgt):
        tgt2 = self.norm(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout(tgt2)
        return tgt

    def forward(self, tgt):
        if self.normalize_before:
            return self.forward_pre(tgt)
        return self.forward_post(tgt)


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


class MLP(nn.Module):
    """ Very simple multi-layer perceptron (also called FFN)"""

    def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        return x


class MultiScaleMaskedTransformerDecoder(nn.Module):
    def __init__(
        self,
        in_channels,
        num_classes,
        mask_classification=True,  
        hidden_dim=256,
        num_queries=100,
        nheads=8,
        dim_feedforward=2048,
        dec_layers=10,
        pre_norm=False,
        mask_dim=256,
        enforce_input_project=False
    ):
        super().__init__()

        assert mask_classification, "Only support mask classification model"
        self.mask_classification = mask_classification

        # positional encoding
        N_steps = hidden_dim // 2
        self.pe_layer = PositionEmbeddingSine(N_steps, normalize=True)
        
        # define Transformer decoder here
        self.num_heads = nheads
        self.num_layers = dec_layers
        self.transformer_self_attention_layers = nn.ModuleList()
        self.transformer_cross_attention_layers = nn.ModuleList()
        self.transformer_ffn_layers = nn.ModuleList()

        for _ in range(self.num_layers):
            self.transformer_self_attention_layers.append(
                SelfAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_cross_attention_layers.append(
                CrossAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

            self.transformer_ffn_layers.append(
                FFNLayer(
                    d_model=hidden_dim,
                    dim_feedforward=dim_feedforward,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

        self.decoder_norm = nn.LayerNorm(hidden_dim)

        self.num_queries = num_queries
        # learnable query features
        self.query_feat = nn.Embedding(num_queries, hidden_dim)
        # learnable query p.e.
        self.query_embed = nn.Embedding(num_queries, hidden_dim)

        # level embedding (we always use 3 scales)
        self.num_feature_levels = 3
        self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim)
        self.input_proj = nn.ModuleList()
        for _ in range(self.num_feature_levels):
            if in_channels != hidden_dim or enforce_input_project:
                self.input_proj.append(nn.Conv2d(in_channels, hidden_dim, kernel_size=1))
                weight_init.c2_xavier_fill(self.input_proj[-1])
            else:
                self.input_proj.append(nn.Sequential())

        # output FFNs
        if self.mask_classification:
            self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
        self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)

    def forward(self, x, mask_features, mask = None):
        #print(mask_features.shape, "!!")
        # x is a list of multi-scale feature
        assert len(x) == self.num_feature_levels
        src = []
        pos = []
        size_list = []

        # disable mask, it does not affect performance
        del mask

        for i in range(self.num_feature_levels):
            size_list.append(x[i].shape[-2:])
            pos.append(self.pe_layer(x[i], None).flatten(2))
            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])

            # flatten NxCxHxW to HWxNxC
            pos[-1] = pos[-1].permute(2, 0, 1)
            src[-1] = src[-1].permute(2, 0, 1)

        _, bs, _ = src[0].shape

        # QxNxC
        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)

        predictions_class = []
        predictions_mask = []

        # prediction heads on learnable query features
        outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
        predictions_class.append(outputs_class)
        predictions_mask.append(outputs_mask)

        for i in range(self.num_layers):
            level_index = i % self.num_feature_levels
            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
            # attention: cross-attention first
            output = self.transformer_cross_attention_layers[i](
                output, src[level_index],
                memory_mask=attn_mask,
                memory_key_padding_mask=None,  # here we do not apply masking on padded region
                pos=pos[level_index], query_pos=query_embed
            )

            output = self.transformer_self_attention_layers[i](
                output, tgt_mask=None,
                tgt_key_padding_mask=None,
                query_pos=query_embed
            )
            
            # FFN
            output = self.transformer_ffn_layers[i](
                output
            )
            #print(output.shape, "??")

            outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
            predictions_class.append(outputs_class)
            predictions_mask.append(outputs_mask)

        assert len(predictions_class) == self.num_layers + 1

        out = {
            'pred_logits': predictions_class[-1],
            'pred_masks': predictions_mask[-1],
            'aux_outputs': self._set_aux_loss(
                predictions_class if self.mask_classification else None, predictions_mask
            )
        }
        return out

    def forward_prediction_heads(self, output, mask_features, attn_mask_target_size):
        decoder_output = self.decoder_norm(output)
        decoder_output = decoder_output.transpose(0, 1)
        outputs_class = self.class_embed(decoder_output)
        mask_embed = self.mask_embed(decoder_output)
        outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)

        # NOTE: prediction is of higher-resolution
        # [B, Q, H, W] -> [B, Q, H*W] -> [B, h, Q, H*W] -> [B*h, Q, HW]
        attn_mask = F.interpolate(outputs_mask, size=attn_mask_target_size, mode="bilinear", align_corners=False)
        # must use bool type
        # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged.
        #print('before',  attn_mask.shape)
        #print(self.num_heads)
        attn_mask = (attn_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5).bool()
        #print('after', attn_mask.shape)
        attn_mask = attn_mask.detach()

        return outputs_class, outputs_mask, attn_mask

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_seg_masks):
        # this is a workaround to make torchscript happy, as torchscript
        # doesn't support dictionary with non-homogeneous values, such
        # as a dict having both a Tensor and a list.
        if self.mask_classification:
            return [
                {"pred_logits": a, "pred_masks": b}
                for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1])
            ]
        else:
            return [{"pred_masks": b} for b in outputs_seg_masks[:-1]]