Deploying pipeline
Browse files- app.py +81 -0
- multilingual_sentiment_model.py +163 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import logging
|
4 |
+
from multilingual_sentiment_model import *
|
5 |
+
|
6 |
+
# === Setup Logging ===
|
7 |
+
logging.basicConfig(
|
8 |
+
level=logging.INFO,
|
9 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
10 |
+
)
|
11 |
+
|
12 |
+
# Gradio Function with Logging
|
13 |
+
def youtube_sentiment_analysis(url, num_of_comments):
|
14 |
+
try:
|
15 |
+
video_id = extract_video_id(url)
|
16 |
+
if not video_id:
|
17 |
+
logging.warning("Invalid YouTube URL entered in UI.")
|
18 |
+
return "Error: Invalid YouTube URL", None, None
|
19 |
+
|
20 |
+
video_title = get_video_title(video_id) # Fetch video title
|
21 |
+
|
22 |
+
comments, error = get_comments(video_id, int(num_of_comments))
|
23 |
+
if error:
|
24 |
+
logging.error(f"Error fetching comments: {error}")
|
25 |
+
return f"Error fetching comments: {error}", None, None
|
26 |
+
|
27 |
+
if not comments:
|
28 |
+
logging.warning("No comments found for the video.")
|
29 |
+
return "Error: No comments found.", None, None
|
30 |
+
|
31 |
+
sentiment_results, sentiment_counts = analyze_sentiment(comments)
|
32 |
+
chart = plot_pie_chart(sentiment_counts, video_title) # Pass title to the chart
|
33 |
+
summary = get_overall_sentiment(sentiment_counts)
|
34 |
+
|
35 |
+
return summary, chart, pd.DataFrame(sentiment_results).head(5)
|
36 |
+
|
37 |
+
except Exception as e:
|
38 |
+
logging.exception(f"Unexpected Error: {str(e)}")
|
39 |
+
return f"Unexpected Error: {str(e)}", None, None
|
40 |
+
|
41 |
+
# Gradio Interface (All Outputs Below Input)
|
42 |
+
iface = gr.Blocks()
|
43 |
+
|
44 |
+
# Example YouTube URLs
|
45 |
+
example_urls = [
|
46 |
+
"https://www.youtube.com/watch?v=0e9WuB0Ua98",
|
47 |
+
"https://www.youtube.com/watch?v=3JZ_D3ELwOQ",
|
48 |
+
"https://youtu.be/dQw4w9WgXcQ",
|
49 |
+
"https://www.youtube.com/watch?v=9bZkp7q19f0",
|
50 |
+
"https://www.youtube.com/watch?v=2Vv-BfVoq4g"
|
51 |
+
]
|
52 |
+
|
53 |
+
with iface:
|
54 |
+
gr.Markdown("## YouTube Comment Sentiment Analysis", elem_classes='centered-title')
|
55 |
+
|
56 |
+
gr.Markdown("Enter a YouTube video URL and specify the number of comments to analyze.")
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
youtube_url = gr.Textbox(label="YouTube Video URL")
|
60 |
+
num_comments = gr.Slider(minimum=10, maximum=1000, step=1, value=100, label="Number of Comments to Fetch")
|
61 |
+
|
62 |
+
submit_btn = gr.Button("Submit")
|
63 |
+
|
64 |
+
# All outputs are placed BELOW the input
|
65 |
+
output_summary = gr.Textbox(label="Overall Sentiment Summary")
|
66 |
+
output_chart = gr.Plot(label="Sentiment Chart")
|
67 |
+
output_table = gr.Dataframe(label="Comment Sentiment Analysis")
|
68 |
+
|
69 |
+
submit_btn.click(
|
70 |
+
youtube_sentiment_analysis,
|
71 |
+
inputs=[youtube_url, num_comments],
|
72 |
+
outputs=[output_summary, output_chart, output_table],
|
73 |
+
)
|
74 |
+
|
75 |
+
gr.Markdown("### Example YouTube Video URLs for Testing (Click to Use)")
|
76 |
+
with gr.Row():
|
77 |
+
for example in example_urls:
|
78 |
+
gr.Button(example).click(fn=lambda x=example: x, outputs=[youtube_url])
|
79 |
+
|
80 |
+
# Launch App
|
81 |
+
iface.launch(share=True)
|
multilingual_sentiment_model.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import logging
|
5 |
+
from googleapiclient.discovery import build
|
6 |
+
from transformers import pipeline
|
7 |
+
import textwrap
|
8 |
+
|
9 |
+
# === Setup Logging ===
|
10 |
+
logging.basicConfig(
|
11 |
+
filename="app_logs.log", # Log file name
|
12 |
+
level=logging.INFO, # Log info, warnings, and errors
|
13 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
14 |
+
)
|
15 |
+
|
16 |
+
# Replace with your API Key
|
17 |
+
API_KEY = "AIzaSyAlKTUhY9t3yaJvk0E2goCuLEtcsTOFMBM"
|
18 |
+
|
19 |
+
# Load Hugging Face Sentiment Model
|
20 |
+
try:
|
21 |
+
sentiment_classifier = pipeline(
|
22 |
+
model="lxyuan/distilbert-base-multilingual-cased-sentiments-student",
|
23 |
+
top_k=None
|
24 |
+
)
|
25 |
+
logging.info("Sentiment analysis model loaded successfully.")
|
26 |
+
except Exception as e:
|
27 |
+
logging.error(f"Failed to load sentiment model: {e}")
|
28 |
+
raise RuntimeError("Error loading sentiment model. Check logs for details.")
|
29 |
+
|
30 |
+
# Extract Video ID from URL
|
31 |
+
|
32 |
+
def extract_video_id(url):
|
33 |
+
"""
|
34 |
+
Extracts YouTube video ID from various YouTube URL formats.
|
35 |
+
"""
|
36 |
+
try:
|
37 |
+
# Handle multiple YouTube URL formats
|
38 |
+
patterns = [
|
39 |
+
r"(?:https?:\/\/)?(?:www\.)?youtube\.com\/watch\?v=([^&]+)",
|
40 |
+
r"(?:https?:\/\/)?(?:www\.)?youtube\.com\/embed\/([^?]+)",
|
41 |
+
r"(?:https?:\/\/)?(?:www\.)?youtube\.com\/v\/([^?]+)",
|
42 |
+
r"(?:https?:\/\/)?youtu\.be\/([^?]+)"
|
43 |
+
]
|
44 |
+
|
45 |
+
for pattern in patterns:
|
46 |
+
match = re.search(pattern, url)
|
47 |
+
if match:
|
48 |
+
video_id = match.group(1)
|
49 |
+
return video_id
|
50 |
+
|
51 |
+
return None # If no match found, return None
|
52 |
+
except Exception as e:
|
53 |
+
return None
|
54 |
+
|
55 |
+
# Fetch YouTube Comments with Pagination
|
56 |
+
def get_comments(video_id, max_results=500):
|
57 |
+
youtube = build("youtube", "v3", developerKey=API_KEY)
|
58 |
+
comments = []
|
59 |
+
next_page_token = None
|
60 |
+
|
61 |
+
try:
|
62 |
+
while len(comments) < max_results:
|
63 |
+
request = youtube.commentThreads().list(
|
64 |
+
part="snippet",
|
65 |
+
videoId=video_id,
|
66 |
+
maxResults=min(100, max_results - len(comments)), # Up to 100 per request
|
67 |
+
textFormat="plainText",
|
68 |
+
pageToken=next_page_token
|
69 |
+
)
|
70 |
+
response = request.execute()
|
71 |
+
|
72 |
+
for item in response.get("items", []):
|
73 |
+
comment = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
|
74 |
+
comments.append(comment)
|
75 |
+
|
76 |
+
next_page_token = response.get("nextPageToken")
|
77 |
+
if not next_page_token:
|
78 |
+
break
|
79 |
+
|
80 |
+
logging.info(f"Fetched {len(comments)} comments for Video ID: {video_id}")
|
81 |
+
except Exception as e:
|
82 |
+
logging.error(f"Error fetching comments: {e}")
|
83 |
+
return [], f"Error fetching comments: {e}"
|
84 |
+
|
85 |
+
return comments[:max_results], None
|
86 |
+
|
87 |
+
|
88 |
+
def get_video_title(video_id):
|
89 |
+
"""
|
90 |
+
Fetches the title of the YouTube video using the YouTube Data API.
|
91 |
+
"""
|
92 |
+
youtube = build("youtube", "v3", developerKey=API_KEY)
|
93 |
+
|
94 |
+
try:
|
95 |
+
request = youtube.videos().list(
|
96 |
+
part="snippet",
|
97 |
+
id=video_id
|
98 |
+
)
|
99 |
+
response = request.execute()
|
100 |
+
|
101 |
+
if "items" in response and len(response["items"]) > 0:
|
102 |
+
video_title = response["items"][0]["snippet"]["title"]
|
103 |
+
return video_title
|
104 |
+
else:
|
105 |
+
return "Unknown Video Title"
|
106 |
+
except Exception as e:
|
107 |
+
logging.error(f"Error fetching video title: {e}")
|
108 |
+
return "Error Fetching Title"
|
109 |
+
|
110 |
+
# Sentiment Analysis
|
111 |
+
def analyze_sentiment(comments):
|
112 |
+
results = []
|
113 |
+
sentiment_counts = {"positive": 0, "neutral": 0, "negative": 0}
|
114 |
+
|
115 |
+
try:
|
116 |
+
for comment in comments:
|
117 |
+
sentiment_scores = sentiment_classifier(comment)[0]
|
118 |
+
sentiment = max(sentiment_scores, key=lambda x: x['score'])
|
119 |
+
sentiment_label = sentiment['label']
|
120 |
+
sentiment_counts[sentiment_label] += 1
|
121 |
+
results.append({"Comment": comment, "Sentiment": sentiment_label, "Score": sentiment['score']})
|
122 |
+
|
123 |
+
logging.info("Sentiment analysis completed successfully.")
|
124 |
+
except Exception as e:
|
125 |
+
logging.error(f"Error analyzing sentiment: {e}")
|
126 |
+
return [], f"Error analyzing sentiment: {e}"
|
127 |
+
|
128 |
+
return results, sentiment_counts
|
129 |
+
|
130 |
+
# Generate Pie Chart
|
131 |
+
def plot_pie_chart(sentiment_counts, video_title):
|
132 |
+
"""
|
133 |
+
Generates a pie chart for sentiment distribution with a wrapped video title.
|
134 |
+
"""
|
135 |
+
try:
|
136 |
+
fig, ax = plt.subplots(figsize=(8,6)) # Increase figure size for better visibility
|
137 |
+
|
138 |
+
# Wrap title if it's too long
|
139 |
+
wrapped_title = "\n".join(textwrap.wrap(video_title, width=50)) # Wrap title every 50 characters
|
140 |
+
|
141 |
+
ax.pie(
|
142 |
+
sentiment_counts.values(),
|
143 |
+
labels=sentiment_counts.keys(),
|
144 |
+
autopct='%1.1f%%',
|
145 |
+
startangle=140
|
146 |
+
)
|
147 |
+
ax.set_title(f"Sentiment Analysis for:\n{wrapped_title}", fontsize=10) # Apply wrapped title
|
148 |
+
|
149 |
+
logging.info(f"Pie chart generated successfully for {video_title}.")
|
150 |
+
return fig
|
151 |
+
except Exception as e:
|
152 |
+
logging.error(f"Error generating pie chart: {e}")
|
153 |
+
return None
|
154 |
+
|
155 |
+
# Overall Sentiment Summary
|
156 |
+
def get_overall_sentiment(sentiment_counts):
|
157 |
+
try:
|
158 |
+
overall_sentiment = f"Overall Video Sentiment: {max(sentiment_counts, key=sentiment_counts.get).upper()}"
|
159 |
+
logging.info(f"Overall Sentiment: {overall_sentiment}")
|
160 |
+
return overall_sentiment
|
161 |
+
except Exception as e:
|
162 |
+
logging.error(f"Error calculating overall sentiment: {e}")
|
163 |
+
return "Error calculating overall sentiment."
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
google-api-python-client
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
pandas
|
5 |
+
matplotlib
|
6 |
+
gradio
|