Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
import transformers
|
| 4 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 5 |
+
|
| 6 |
+
from peft import (
|
| 7 |
+
PeftModel,
|
| 8 |
+
LoraConfig,
|
| 9 |
+
get_peft_model,
|
| 10 |
+
prepare_model_for_kbit_training
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
import bs4
|
| 14 |
+
import requests
|
| 15 |
+
from typing import List
|
| 16 |
+
|
| 17 |
+
import nltk
|
| 18 |
+
from nltk import sent_tokenize
|
| 19 |
+
|
| 20 |
+
from tqdm import tqdm
|
| 21 |
+
|
| 22 |
+
import numpy as np
|
| 23 |
+
|
| 24 |
+
import torch
|
| 25 |
+
|
| 26 |
+
import faiss
|
| 27 |
+
|
| 28 |
+
import re
|
| 29 |
+
|
| 30 |
+
import unicodedata
|
| 31 |
+
|
| 32 |
+
import gradio as gr
|
| 33 |
+
import asyncio
|
| 34 |
+
|
| 35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
+
device
|
| 37 |
+
|
| 38 |
+
base_model_id = "microsoft/phi-2"
|
| 39 |
+
|
| 40 |
+
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
| 41 |
+
bnb_4bit_quant_type='nf4',
|
| 42 |
+
bnb_4bit_compute_dtype='float16',
|
| 43 |
+
bnb_4bit_use_double_quant=True)
|
| 44 |
+
|
| 45 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
+
base_model_id,
|
| 47 |
+
device_map='auto',
|
| 48 |
+
quantization_config=bnb_config,
|
| 49 |
+
trust_remote_code=True
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
ft_model = PeftModel.from_pretrained(model, "yurezsml/phi2_chan")
|
| 53 |
+
|
| 54 |
+
def remove_accents(input_str):
|
| 55 |
+
nfkd_form = unicodedata.normalize('NFKD', input_str)
|
| 56 |
+
return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
|
| 57 |
+
|
| 58 |
+
def preprocess(text):
|
| 59 |
+
text = text.lower()
|
| 60 |
+
temp = remove_accents(text)
|
| 61 |
+
text = text.replace('\xa0', ' ')
|
| 62 |
+
text = text.replace('\n\n', '\n')
|
| 63 |
+
text = text.replace('()', '')
|
| 64 |
+
text = text.replace('[]', '')
|
| 65 |
+
text = re.sub("[\(\[].*?[\)\]]", "", text)
|
| 66 |
+
text = text.replace('а́', 'а')
|
| 67 |
+
return text
|
| 68 |
+
|
| 69 |
+
def split_text(text: str, n=2, character=" ") -> List[str]:
|
| 70 |
+
text = preprocess(text)
|
| 71 |
+
|
| 72 |
+
all_sentences = sent_tokenize(text)
|
| 73 |
+
return [' '.join(all_sentences[i : i + n]) for i in range(0, len(all_sentences), 2)]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def split_documents(documents: List[str]) -> list:
|
| 77 |
+
texts = []
|
| 78 |
+
for text in documents:
|
| 79 |
+
if text is not None:
|
| 80 |
+
for passage in split_text(text):
|
| 81 |
+
texts.append(passage)
|
| 82 |
+
|
| 83 |
+
return texts
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def embed(text, model, tokenizer):
|
| 87 |
+
encoded_input = tokenizer(text, padding=True, truncation=True, max_length=512, return_tensors='pt').to(model.device)
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
model_output = model(**encoded_input)
|
| 90 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 91 |
+
input_mask_expanded = encoded_input['attention_mask'].unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 92 |
+
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
|
| 93 |
+
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 94 |
+
return sum_embeddings / sum_mask
|
| 95 |
+
|
| 96 |
+
response = requests.get("https://en.wikipedia.org/wiki/Chandler_Bing")
|
| 97 |
+
|
| 98 |
+
base_text = ''
|
| 99 |
+
|
| 100 |
+
if response:
|
| 101 |
+
html = bs4.BeautifulSoup(response.text, 'html.parser')
|
| 102 |
+
|
| 103 |
+
title = html.select("#firstHeading")[0].text
|
| 104 |
+
paragraphs = html.select("p")
|
| 105 |
+
for para in paragraphs:
|
| 106 |
+
base_text = base_text + para.text
|
| 107 |
+
|
| 108 |
+
fact_coh_tokenizer = AutoTokenizer.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
|
| 109 |
+
fact_coh_model = AutoModel.from_pretrained("DeepPavlov/bert-base-multilingual-cased-sentence")
|
| 110 |
+
fact_coh_model.to(device)
|
| 111 |
+
|
| 112 |
+
nltk.download('punkt')
|
| 113 |
+
subsample_documents = split_documents([base_text])
|
| 114 |
+
|
| 115 |
+
batch_size = 8
|
| 116 |
+
total_batches = len(subsample_documents) // batch_size + (0 if len(subsample_documents) % batch_size == 0 else 1)
|
| 117 |
+
|
| 118 |
+
base = list()
|
| 119 |
+
for i in tqdm(range(0, len(subsample_documents), batch_size), total=total_batches, desc="Processing Batches"):
|
| 120 |
+
batch_texts = subsample_documents[i:i + batch_size]
|
| 121 |
+
base.extend(embed(batch_texts, fact_coh_model, fact_coh_tokenizer))
|
| 122 |
+
|
| 123 |
+
base = np.array([vector.cpu().numpy() for vector in base])
|
| 124 |
+
|
| 125 |
+
index = faiss.IndexFlatL2(base.shape[1])
|
| 126 |
+
index.add(base)
|
| 127 |
+
|
| 128 |
+
async def get_context(subsample_documents, query, index, model, tokenizer):
|
| 129 |
+
k = 5
|
| 130 |
+
xq = embed(query.lower(), model, tokenizer).cpu().numpy()
|
| 131 |
+
D, I = index.search(xq.reshape(1, 768), k)
|
| 132 |
+
return subsample_documents[I[0][0]]
|
| 133 |
+
|
| 134 |
+
async def get_prompt(question, use_rag, answers_history: list[str]):
|
| 135 |
+
eval_prompt = '###system: answer the question as Chandler. '
|
| 136 |
+
for idx, text in enumerate(answers_history):
|
| 137 |
+
if idx % 2 == 0:
|
| 138 |
+
eval_prompt = eval_prompt + f' ###question: {text}'
|
| 139 |
+
else:
|
| 140 |
+
eval_prompt = eval_prompt + f' ###answer: {text} '
|
| 141 |
+
if use_rag:
|
| 142 |
+
context = await asyncio.wait_for(get_context(subsample_documents, question, index, fact_coh_model, fact_coh_tokenizer), timeout=60)
|
| 143 |
+
eval_prompt = eval_prompt + f' Chandler. {context}'
|
| 144 |
+
eval_prompt = eval_prompt + f' ###question: {question} '
|
| 145 |
+
eval_prompt = ' '.join(eval_prompt.split())
|
| 146 |
+
return eval_prompt
|
| 147 |
+
|
| 148 |
+
async def get_answer(question, use_rag, answers_history: list[str]):
|
| 149 |
+
eval_prompt = await asyncio.wait_for(get_prompt(question, use_rag, answers_history), timeout=60)
|
| 150 |
+
model_input = tokenizer(eval_prompt, return_tensors="pt").to(device)
|
| 151 |
+
ft_model.eval()
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
answer = tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=30, repetition_penalty=1.11)[0], skip_special_tokens=True) + '\n'
|
| 154 |
+
answer = ' '.join(answer.split())
|
| 155 |
+
if eval_prompt in answer:
|
| 156 |
+
answer = answer.replace(eval_prompt,'')
|
| 157 |
+
answer = answer.split('###answer')[1]
|
| 158 |
+
|
| 159 |
+
dialog = ''
|
| 160 |
+
for idx, text in enumerate(answers_history):
|
| 161 |
+
if idx % 2 == 0:
|
| 162 |
+
dialog = dialog + f'you: {text}\n'
|
| 163 |
+
else:
|
| 164 |
+
dialog = dialog + f'Chandler: {text}\n'
|
| 165 |
+
dialog = dialog + f'you: {question}\n'
|
| 166 |
+
dialog = dialog + f'Chandler: {answer}\n'
|
| 167 |
+
|
| 168 |
+
answers_history.append(question)
|
| 169 |
+
answers_history.append(answer)
|
| 170 |
+
|
| 171 |
+
return dialog, answers_history
|
| 172 |
+
|
| 173 |
+
async def async_proc(question, use_rag, answers_history: list[str]):
|
| 174 |
+
try:
|
| 175 |
+
return await asyncio.wait_for(get_answer(question, use_rag, answers_history), timeout=60)
|
| 176 |
+
except asyncio.TimeoutError:
|
| 177 |
+
return "Processing timed out.", answers_history
|
| 178 |
+
|
| 179 |
+
gr.Interface(
|
| 180 |
+
fn=async_proc,
|
| 181 |
+
inputs=[
|
| 182 |
+
gr.Textbox(
|
| 183 |
+
label="Question",
|
| 184 |
+
),
|
| 185 |
+
gr.Checkbox(label="Use RAG", info="Pick to RAG to improve factual coherence"),
|
| 186 |
+
gr.State(value=[]),
|
| 187 |
+
],
|
| 188 |
+
outputs=[
|
| 189 |
+
gr.Textbox(
|
| 190 |
+
label="Chat"
|
| 191 |
+
),
|
| 192 |
+
gr.State(),
|
| 193 |
+
],
|
| 194 |
+
title="Асинхронный сервис для чат-бота по сериалу Друзья",
|
| 195 |
+
concurrency_limit=5
|
| 196 |
+
).queue().launch(share=True, debug=True)
|