yunusserhat's picture
Create APP
894bc0c verified
import torch
import numpy as np
from abc import ABC, abstractmethod
from torch import nn
from hydra.utils import instantiate
import copy
from peft import LoraConfig, get_peft_model
from utils.model_utils import print_trainable_parameters
def freeze(model):
"""Freezes the parameters of a model."""
for p in model.parameters():
p.requires_grad = False
model.eval()
def unfreeze(model):
"""Unfreezes the parameters of a model.
for p in model.parameters():
p.requires_grad = True"""
model_parameters = model.named_parameters()
for name, param in model_parameters:
if name in [
"clip.vision_model.post_layernorm.weight",
"clip.vision_model.post_layernorm.bias",
]:
param.requires_grad = False
else:
param.requires_grad = True
model.train()
def unfreeze_last(model):
"""Unfreezes the parameters of a model.
for p in model.parameters():
p.requires_grad = True"""
model_parameters = model.named_parameters()
for name, param in model_parameters:
if len(name.split(".")) > 5:
if name.split(".")[4] == "11":
param.requires_grad = True
else:
param.requires_grad = False
else:
param.requires_grad = False
model.train()
class FrozenBackbone(nn.Module):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head):
super().__init__()
self.backbone = backbone.instance
self.mid = mid.instance
self.head = head.instance
self.target_key = head.target_key
freeze(self.backbone)
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
with torch.no_grad():
x = self.backbone(x)
x = self.mid(x)
x = self.head(x)
return x
class UnfrozenBackbone(nn.Module):
"""Unfreezes the backbone of a network."""
def __init__(self, backbone, mid, head):
super().__init__()
self.backbone = backbone.instance
self.mid = mid.instance
self.head = head.instance
self.target_key = head.target_key
unfreeze(self.backbone)
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
x = self.backbone(x)
x = self.mid(x)
x = self.head(x)
return x
class UnfrozenPartBackbone(nn.Module):
"""Unfreezes the backbone of a network."""
def __init__(self, backbone, mid, head):
super().__init__()
self.backbone = backbone.instance
self.mid = mid.instance
self.head = head.instance
self.target_key = head.target_key
unfreeze_last(self.backbone)
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
x = self.backbone(x)
x = self.mid(x)
x = self.head(x)
return x
class NoFeatureBackbone(nn.Module):
"""Randomizes the backbone of a network."""
def __init__(self, head):
super().__init__()
self.head = head.instance
self.target_key = head.target_key
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
return self.head(x)
class ContrastiveFrozenBackbone(FrozenBackbone):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head, mode):
super().__init__(backbone, mid, head)
self.mode = mode
def forward(self, x):
with torch.no_grad():
features = self.backbone(x)
if self.mode != "eval":
x_pos = {
k.strip("pos_"): v.clone()
if isinstance(v, torch.Tensor)
else copy.deepcopy(v)
for k, v in x.items()
if k.startswith("pos_")
}
pos_features = self.backbone(x_pos)
x = self.mid(features)
x = self.head(x)
if self.mode != "eval":
return {
"features": features[:, 0, :],
"pos_features": pos_features[:, 0, :],
**x,
}
return {
"features": features[:, 0, :],
**x,
}
class ContrastiveUnFrozenPartBackbone(UnfrozenPartBackbone):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head, mode):
super().__init__(backbone, mid, head)
self.mode = mode
def forward(self, x):
features = self.backbone(x)
if self.mode != "eval":
x_pos = {
k.strip("pos_"): v.clone()
if isinstance(v, torch.Tensor)
else copy.deepcopy(v)
for k, v in x.items()
if k.startswith("pos_")
}
pos_features = self.backbone(x_pos)
x = self.mid(features)
x = self.head(x)
if self.mode != "eval":
return {
"features": features[:, 0, :],
"pos_features": pos_features[:, 0, :],
**x,
}
return {
"features": features[:, 0, :],
**x,
}
class ContrastiveUnFrozenBackbone(UnfrozenBackbone):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head, mode):
super().__init__(backbone, mid, head)
self.mode = mode
def forward(self, x):
features = self.backbone(x)
if self.mode != "eval":
x_pos = {
k.strip("pos_"): v.clone()
if isinstance(v, torch.Tensor)
else copy.deepcopy(v)
for k, v in x.items()
if k.startswith("pos_")
}
pos_features = self.backbone(x_pos)
x = self.mid(features)
x = self.head(x)
if self.mode != "eval":
return {
"features": features[:, 0, :],
"pos_features": pos_features[:, 0, :],
**x,
}
return {
"features": features[:, 0, :],
**x,
}
class TextContrastiveUnFrozenBackbone(UnfrozenBackbone):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head):
super().__init__(backbone, mid, head)
def forward(self, x):
con, features = self.backbone(x)
x = self.mid(features)
x = self.head(x)
return {
"features": con,
**x,
}
class LoraBackbone(nn.Module):
"""Wraps the backbone in a PEFT model for LoRA tuning."""
def __init__(self, backbone, mid, head, r, alpha, dropout, bias):
super().__init__()
self.backbone = backbone.instance
self.mid = mid.instance
self.head = head.instance
self.target_key = head.target_key
freeze(self.backbone)
config = LoraConfig(
r=r,
lora_alpha=alpha,
lora_dropout=dropout,
bias=bias,
target_modules=["q_proj", "k_proj", "v_proj"],
)
self.backbone = get_peft_model(self.backbone, config)
print_trainable_parameters(self)
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
x = self.backbone(x)
x = self.mid(x)
return self.head(x)
class HybridFrozenBackbone(FrozenBackbone):
"""Freezes the backbone of a network."""
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
gt_label = x["label"] if self.training else None
with torch.no_grad():
x = self.backbone(x)
x = self.mid(x)
x = self.head(x, gt_label)
return x
class HybridUnfrozenBackbone(UnfrozenBackbone):
"""Unfreezes the backbone of a network."""
def forward(self, x):
"""Forward pass of the network.
x : Union[torch.Tensor, dict] with the output of the backbone.
"""
gt_label = x["label"] if self.training else None
x = self.backbone(x)
x = self.mid(x)
x = self.head(x, gt_label)
return x
class ContrastiveHybridUnFrozenBackbone(UnfrozenBackbone):
"""Freezes the backbone of a network."""
def __init__(self, backbone, mid, head, mode):
super().__init__(backbone, mid, head)
self.mode = mode
def forward(self, x):
gt_label = x["label"] if self.training else None
features = self.backbone(x)
if self.mode != "eval":
x_pos = {
k.strip("pos_"): v.clone()
if isinstance(v, torch.Tensor)
else copy.deepcopy(v)
for k, v in x.items()
if k.startswith("pos_")
}
pos_features = self.backbone(x_pos)
x = self.mid(features)
x = self.head(x, gt_label)
if self.mode != "eval":
return {
"features": features[:, 0, :],
"pos_features": pos_features[:, 0, :],
**x,
}
return {
"features": features[:, 0, :],
**x,
}