File size: 4,943 Bytes
894bc0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch

from metrics.utils import haversine, reverse

from torchmetrics import Metric


class HaversineMetrics(Metric):
    """

    Computes the average haversine distance between the predicted and ground truth points.

    Compute the accuracy given some radiuses.

    Compute the Geoguessr score given some radiuses.



    Args:

        acc_radiuses (list): list of radiuses to compute the accuracy from

        acc_area (list): list of areas to compute the accuracy from.

        acc_data (list): list of auxilliary data to compute the accuracy from.

    """

    def __init__(

        self,

        acc_radiuses=[],

        acc_area=["country", "region", "sub-region", "city"],

        aux_data=[],

    ):
        super().__init__()
        self.add_state("haversine_sum", default=torch.tensor(0.0), dist_reduce_fx="sum")
        self.add_state("geoguessr_sum", default=torch.tensor(0.0), dist_reduce_fx="sum")
        for acc in acc_radiuses:
            self.add_state(
                f"close_enough_points_{acc}",
                default=torch.tensor(0.0),
                dist_reduce_fx="sum",
            )
        for acc in acc_area:
            self.add_state(
                f"close_enough_points_{acc}",
                default=torch.tensor(0.0),
                dist_reduce_fx="sum",
            )
            self.add_state(
                f"count_{acc}", default=torch.tensor(0), dist_reduce_fx="sum"
            )
        self.acc_radius = acc_radiuses
        self.acc_area = acc_area
        self.add_state("count", default=torch.tensor(0), dist_reduce_fx="sum")
        self.aux = len(aux_data) > 0
        self.aux_list = aux_data
        if self.aux:
            self.aux_count = {}
            for col in self.aux_list:
                self.add_state(
                    f"aux_{col}",
                    default=torch.tensor(0.0),
                    dist_reduce_fx="sum",
                )

    def update(self, pred, gt):
        haversine_distance = haversine(pred["gps"], gt["gps"])
        for acc in self.acc_radius:
            self.__dict__[f"close_enough_points_{acc}"] += (
                haversine_distance < acc
            ).sum()
        if len(self.acc_area) > 0:
            area_pred, area_gt = reverse(pred["gps"], gt, self.acc_area)
        for acc in self.acc_area:
            self.__dict__[f"close_enough_points_{acc}"] += (
                area_pred[acc] == area_gt["_".join(["unique", acc])]
            ).sum()
            self.__dict__[f"count_{acc}"] += len(area_gt["_".join(["unique", acc])])
        self.haversine_sum += haversine_distance.sum()
        self.geoguessr_sum += 5000 * torch.exp(-haversine_distance / 1492.7).sum()

        if self.aux:
            if "land_cover" in self.aux_list:
                col = "land_cover"
                self.__dict__[f"aux_{col}"] += (
                    pred[col].argmax(dim=1) == gt[col].argmax(dim=1)
                ).sum()
            if "road_index" in self.aux_list:
                col = "road_index"
                self.__dict__[f"aux_{col}"] += (
                    pred[col].argmax(dim=1) == gt[col].argmax(dim=1)
                ).sum()
            if "drive_side" in self.aux_list:
                col = "drive_side"
                self.__dict__[f"aux_{col}"] += (
                    (pred[col] > 0.5).float() == gt[col]
                ).sum()
            if "climate" in self.aux_list:
                col = "climate"
                self.__dict__[f"aux_{col}"] += (
                    pred[col].argmax(dim=1) == gt[col].argmax(dim=1)
                ).sum()
            if "soil" in self.aux_list:
                col = "soil"
                self.__dict__[f"aux_{col}"] += (
                    pred[col].argmax(dim=1) == gt[col].argmax(dim=1)
                ).sum()
            if "dist_sea" in self.aux_list:
                col = "dist_sea"
                self.__dict__[f"aux_{col}"] += (
                    (pred[col] - gt[col]).pow(2).sum(dim=1).sum()
                )

        self.count += pred["gps"].shape[0]

    def compute(self):
        output = {
            "Haversine": self.haversine_sum / self.count,
            "Geoguessr": self.geoguessr_sum / self.count,
        }
        for acc in self.acc_radius:
            output[f"Accuracy_{acc}_km_radius"] = (
                self.__dict__[f"close_enough_points_{acc}"] / self.count
            )
        for acc in self.acc_area:
            output[f"Accuracy_{acc}"] = (
                self.__dict__[f"close_enough_points_{acc}"]
                / self.__dict__[f"count_{acc}"]
            )

        if self.aux:
            for col in self.aux_list:
                output["_".join(["Accuracy", col])] = (
                    self.__dict__[f"aux_{col}"] / self.count
                )

        return output