yumikimi381's picture
Upload folder using huggingface_hub
daf0288 verified
raw
history blame
6.74 kB
import torch
from torch import nn, Tensor, einsum
from typing import Optional, Tuple
import math
from functools import partial
from collections import OrderedDict
import torch.nn.functional as F
from einops import rearrange
def exists(val):
return val is not None
def default(val, d):
return val if exists(val) else d
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
class ResBlock(nn.Module):
def __init__(self, chan_in, hidden_size, chan_out):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(chan_in, hidden_size, 3, padding=1),
nn.ReLU(),
nn.Conv2d(hidden_size, hidden_size, 3, padding=1),
nn.ReLU(),
nn.Conv2d(hidden_size, chan_out, 1),
)
def forward(self, x):
return self.net(x) + x
class BasicVAE(nn.Module):
def get_codebook_indices(self, images):
raise NotImplementedError()
def decode(self, img_seq):
raise NotImplementedError()
def get_codebook_probs(self, img_seq):
raise NotImplementedError()
def get_image_tokens_size(self):
pass
def get_image_size(self):
pass
class DiscreteVAE(BasicVAE):
def __init__(
self,
image_size: Tuple[int, int] = [256, 256], # input image size
codebook_tokens: int = 512, # codebook vocab size
codebook_dim: int = 512, # codebook embedding dimension
num_layers: int = 3, # layers of resnet blocks in encoder/decoder
hidden_dim: int = 64, # dimension in resnet blocks
channels: int = 3, # input channels
smooth_l1_loss: bool = False, # prevents exploding gradients
temperature: float = 0.9, # tau in gumbel softmax
straight_through: bool = False, # if True, the returned samples will be discretized as one-hot vectors, but will be differentiated as if it is the soft sample in autograd
kl_div_loss_weight: float = 0.0,
):
super().__init__()
assert num_layers >= 1, "number of layers must be greater than or equal to 1"
self.image_size = image_size
self.codebook_tokens = codebook_tokens
self.num_layers = num_layers
self.temperature = temperature
self.straight_through = straight_through
self.codebook = nn.Embedding(codebook_tokens, codebook_dim)
encoder_layers = list()
decoder_layers = list()
encoder_in = channels
decoder_in = codebook_dim
for _ in range(num_layers):
encoder_layers.append(
nn.Sequential(
nn.Conv2d(encoder_in, hidden_dim, 4, stride=2, padding=1), nn.ReLU()
)
)
encoder_layers.append(
ResBlock(
chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim
)
)
encoder_in = hidden_dim
decoder_layers.append(
nn.Sequential(
nn.ConvTranspose2d(decoder_in, hidden_dim, 4, stride=2, padding=1),
nn.ReLU(),
)
)
decoder_layers.append(
ResBlock(
chan_in=hidden_dim, hidden_size=hidden_dim, chan_out=hidden_dim
)
)
decoder_in = hidden_dim
encoder_layers.append(nn.Conv2d(hidden_dim, codebook_tokens, 1))
decoder_layers.append(nn.Conv2d(hidden_dim, channels, 1))
self.encoder = nn.Sequential(*encoder_layers)
self.decoder = nn.Sequential(*decoder_layers)
self.loss_fn = F.smooth_l1_loss if smooth_l1_loss else F.mse_loss
self.kl_div_loss_weight = kl_div_loss_weight
def get_image_size(self):
return self.image_size
def get_image_tokens_size(self) -> int:
ds_ratio = math.pow(2, self.num_layers)
return int((self.image_size[0] // ds_ratio) * (self.image_size[1] // ds_ratio))
@torch.no_grad()
@eval_decorator
def get_codebook_indices(self, images: Tensor):
logits = self.forward(images, return_logits=True)
codebook_indices = logits.argmax(dim=1)
return codebook_indices
@torch.no_grad()
@eval_decorator
def get_codebook_probs(self, images: Tensor):
logits = self.forward(images, return_logits=True)
return nn.Softmax(dim=1)(logits)
def decode(self, img_seq: Tensor):
image_embeds = self.codebook(img_seq)
image_embeds = image_embeds.permute((0, 3, 1, 2)).contiguous()
# image_embeds = rearrange(image_embeds, "b h w d -> b d h w", h=h, w=w)
images = self.decoder(image_embeds)
return images
def forward(
self,
img: Tensor,
return_loss: bool = False,
return_recons: bool = False,
return_logits: bool = False,
temp=None,
) -> Tuple[Tensor, Optional[Tensor]]:
assert (
img.shape[-1] == self.image_size[0] and img.shape[-2] == self.image_size[1]
), f"input must have the correct image size {self.image_size}"
logits = self.encoder(img)
if return_logits:
return logits # return logits for getting hard image indices for DALL-E training
temp = default(temp, self.temperature)
soft_one_hot = F.gumbel_softmax(
logits, tau=temp, dim=1, hard=self.straight_through
)
sampled = einsum(
"b n h w, n d -> b d h w", soft_one_hot, self.codebook.weight
).contiguous()
out = self.decoder(sampled)
if not return_loss:
return out
# reconstruction loss
recon_loss = self.loss_fn(img, out)
# kl divergence
logits = rearrange(logits, "b n h w -> b (h w) n").contiguous()
qy = F.softmax(logits, dim=-1)
log_qy = torch.log(qy + 1e-10)
log_uniform = torch.log(
torch.tensor([1.0 / self.codebook_tokens], device=img.device)
)
kl_div = F.kl_div(log_uniform, log_qy, None, None, "batchmean", log_target=True)
loss = recon_loss + (kl_div * self.kl_div_loss_weight)
if not return_recons:
return loss
return loss, out
if __name__ == "__main__":
input = torch.rand(1, 3, 256, 256)
model = DiscreteVAE()
loss, output = model(input, return_loss=True, return_recons=True)
print(model)
print(model.get_image_tokens_size())
print(model.get_codebook_indices(input).shape)
print(loss, output.shape, output.max(), output.min())