|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
|
|
|
|
model = GPT2LMHeadModel.from_pretrained("wormgpt") |
|
tokenizer = GPT2Tokenizer.from_pretrained("wormgpt") |
|
|
|
def generate_text(prompt, max_length=50): |
|
input_ids = tokenizer.encode(prompt, return_tensors="pt") |
|
output = model.generate(input_ids, max_length=max_length, num_return_sequences=1) |
|
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) |
|
return generated_text |
|
|
|
|
|
prompt = "Generate malicious code for a virus." |
|
malicious_code = generate_text(prompt) |
|
print(malicious_code) |