Spaces:
Sleeping
Sleeping
File size: 14,451 Bytes
9322a5c 244d99e 8987036 244d99e 8533608 c3c7832 244d99e c5302a0 244d99e 267ce0e 244d99e 267ce0e 244d99e 149b30a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import streamlit as st
import pandas as pd
from transformers import pipeline
import tempfile
import os
from typing import List, Dict
import matplotlib.pyplot as plt
@st.cache_resource
def load_model():
"""Load and cache the sentiment analysis model"""
try:
return pipeline(
"text-classification",
model="KeonBlackwell/movie_sentiment_model",
tokenizer="distilbert-base-uncased"
)
except Exception as e:
st.error(f"模型加载失败: {str(e)}")
return None
def analyze_comments(comments: List[str], classifier) -> List[Dict]:
"""Analyze a list of comments and return sentiment results"""
results = []
for comment in comments:
prediction = classifier(comment)[0]
results.append({
'comment': comment,
'sentiment': 1 if prediction['label'] == 'LABEL_1' else 0,
'confidence': prediction['score']
})
return results
def calculate_star_rating(positive_percent: float) -> int:
"""Convert positive percentage to star rating (1-5)"""
if positive_percent >= 80:
return 5
elif positive_percent >= 60:
return 4
elif positive_percent >= 40:
return 3
elif positive_percent >= 20:
return 2
return 1
def show_sentiment_distribution(positive_percent: float):
"""Display a pie chart of sentiment distribution"""
fig, ax = plt.subplots()
ax.pie([positive_percent, 100-positive_percent],
labels=['Positive', 'Negative'],
autopct='%1.1f%%',
colors=['#4CAF50', '#F44336'])
ax.axis('equal') # Equal aspect ratio ensures pie is drawn as a circle
st.pyplot(fig)
def main():
st.set_page_config(page_title="电影评论分析系统", page_icon="🎬")
# Custom CSS
st.markdown("""
<style>
.reportview-container {
background: #f0f2f6;
}
.stProgress > div > div > div > div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
# Load model
classifier = load_model()
if classifier is None:
return
# Page layout
st.title("🎬 电影评论批量分析系统")
st.markdown("""
### 使用说明:
1. 上传包含电影评论的CSV文件(需包含'comment'列)
2. 系统自动分析每条评论的情感倾向
3. 生成整体评分和分析报告
""")
# Sample file download
with st.expander("下载示例文件"):
sample_data = pd.DataFrame({'comment': [
"This movie was fantastic! The acting was superb.",
"I didn't like the plot. It was too predictable.",
"The cinematography was beautiful but the story was weak."
]})
st.download_button(
label="下载示例CSV",
data=sample_data.to_csv(index=False).encode('utf-8'),
file_name="sample_reviews.csv",
mime="text/csv"
)
# File upload
uploaded_file = st.file_uploader("上传CSV文件", type=["csv"])
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file)
if 'comment' not in df.columns:
st.error("CSV文件必须包含'comment'列")
return
comments = df['comment'].dropna().tolist()
with st.expander("原始数据预览(前5行)"):
st.dataframe(df.head())
if st.button("开始分析", type="primary"):
if len(comments) > 1000:
st.warning(f"检测到大量评论 ({len(comments)} 条),分析可能需要较长时间...")
with st.spinner("分析中,请稍候..."):
results = analyze_comments(comments, classifier)
result_df = pd.DataFrame(results)
# Calculate statistics
positive_count = result_df['sentiment'].sum()
total_reviews = len(result_df)
positive_percent = (positive_count / total_reviews) * 100
star_rating = calculate_star_rating(positive_percent)
# Display results
st.success("分析完成!")
# Metrics
col1, col2, col3 = st.columns(3)
with col1:
st.metric("⭐ 综合评分", f"{star_rating} 星")
with col2:
st.metric("👍 正面评价", f"{positive_count}/{total_reviews}")
with col3:
st.metric("📈 正面比例", f"{positive_percent:.1f}%")
# Visualizations
show_sentiment_distribution(positive_percent)
# Sample results
with st.expander("查看详细分析结果(前10条)"):
st.dataframe(result_df.head(10))
# Download
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
result_df.to_csv(tmp.name, index=False)
with open(tmp.name, "rb") as f:
st.download_button(
label="下载完整结果",
data=f,
file_name="analysis_results.csv",
mime="text/csv"
)
os.unlink(tmp.name)
except Exception as e:
st.error(f"处理文件时出错: {str(e)}")
if __name__ == "__main__":
main()
Key improvements made:
Added model caching
Included a sample file download
Added a pie chart visualization
Better organized the code into functions
Added type hints
Improved error handling and user feedback
Added warning for large files
Would you like me to explain any specific part of these improvements in more detail?
我不需要优化,在源代码上添加以下几步,合并CSV里的每行评论,合并成一个文本,利用huggingface上的模型keyphrase_extractor = pipeline(
"token-classification",
model="ml6team/keyphrase-extraction-distilbert-inspec",
aggregation_strategy="simple" # 用于合并子词/标记
和summarizer = pipeline("summarization",
model="facebook/bart-large-cnn")
进行提取5个关键词,和生成总结,我是在huggingface上设计app
我将在你的原始代码基础上添加关键词提取和总结生成功能。以下是修改后的代码,保留了原有功能,同时增加了你要求的新特性:
python
import streamlit as st
import pandas as pd
from transformers import pipeline
import tempfile
import os
def calculate_star_rating(positive_percent):
"""将正面评价百分比转换为星级评分"""
if positive_percent >= 80:
return 5
elif positive_percent >= 60:
return 4
elif positive_percent >= 40:
return 3
elif positive_percent >= 20:
return 2
else:
return 1
def main():
st.set_page_config(page_title="电影评论分析系统", page_icon="🎬")
# 自定义样式
st.markdown("""
<style>
.reportview-container {
background: #f0f2f6;
}
.stProgress > div > div > div > div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
# 模型加载
with st.spinner("正在加载所有模型,这可能需要几分钟..."):
try:
# 情感分析模型
classifier = pipeline(
"text-classification",
model="KeonBlackwell/movie_sentiment_model",
tokenizer="distilbert-base-uncased"
)
# 关键词提取模型
keyphrase_extractor = pipeline(
"token-classification",
model="ml6team/keyphrase-extraction-distilbert-inspec",
aggregation_strategy="simple"
)
# 摘要生成模型
summarizer = pipeline("summarization",
model="facebook/bart-large-cnn")
except Exception as e:
st.error(f"模型加载失败: {str(e)}")
return
# 页面布局
st.title("🎬 电影评论批量分析系统")
st.markdown("""
### 使用说明:
1. 上传包含电影评论的CSV文件(需包含'comment'列)
2. 系统自动分析每条评论的情感倾向
3. 生成整体评分、关键词提取和总结报告
""")
# 文件上传
uploaded_file = st.file_uploader("上传CSV文件", type=["csv"])
if uploaded_file is not None:
# 读取数据
try:
df = pd.read_csv(uploaded_file)
if 'comment' not in df.columns:
st.error("CSV文件必须包含'comment'列")
return
comments = df['comment'].tolist()
except Exception as e:
st.error(f"文件读取失败: {str(e)}")
return
# 显示预览
with st.expander("原始数据预览(前5行)"):
st.dataframe(df.head())
if st.button("开始分析"):
# 进度条设置
progress_bar = st.progress(0)
status_text = st.empty()
results = []
total = len(comments)
# 批量预测
try:
# 情感分析
for i, comment in enumerate(comments):
progress = (i+1)/total
progress_bar.progress(progress)
status_text.text(f"正在分析情感 {i+1}/{total} 条评论...")
prediction = classifier(comment)[0]
results.append({
'comment': comment,
'sentiment': 1 if prediction['label'] == 'LABEL_1' else 0,
'confidence': prediction['score']
})
# 转换为DataFrame
result_df = pd.DataFrame(results)
# 计算统计指标
positive_count = result_df['sentiment'].sum()
total_reviews = len(result_df)
positive_percent = (positive_count / total_reviews) * 100
star_rating = calculate_star_rating(positive_percent)
# 显示结果
st.success("情感分析完成!")
# 评分展示
col1, col2, col3 = st.columns(3)
with col1:
st.metric("⭐ 综合评分", f"{star_rating} 星")
with col2:
st.metric("👍 正面评价", f"{positive_count}/{total_reviews}")
with col3:
st.metric("📈 正面比例", f"{positive_percent:.1f}%")
# 进度条可视化
st.progress(positive_percent/100)
# 显示示例结果
with st.expander("查看详细分析结果(前10条)"):
st.dataframe(result_df.head(10))
# 关键词提取和总结
st.subheader("📌 评论关键词提取与总结")
# 合并所有评论为一个文本
combined_text = " ".join(comments)
# 关键词提取
with st.spinner("正在提取关键词..."):
keyphrases = keyphrase_extractor(combined_text)
# 按置信度排序并取前5个
top_keyphrases = sorted(keyphrases, key=lambda x: x['score'], reverse=True)[:5]
# 显示关键词
st.markdown("**🔍 提取的关键词:**")
cols = st.columns(5)
for i, phrase in enumerate(top_keyphrases):
cols[i].markdown(f"""
<div style="
border: 1px solid #ddd;
border-radius: 5px;
padding: 10px;
text-align: center;
margin: 5px;
background-color: #f9f9f9;
">
<b>{phrase['word']}</b><br>
<small>置信度: {phrase['score']:.2f}</small>
</div>
""", unsafe_allow_html=True)
# 生成总结
with st.spinner("正在生成评论总结..."):
# 限制文本长度以避免模型限制
max_length = 1024 # 模型的最大输入长度
if len(combined_text) > max_length:
combined_text = combined_text[:max_length]
summary = summarizer(combined_text,
max_length=130,
min_length=30,
do_sample=False)
# 显示总结
st.markdown("**📝 评论总结:**")
st.info(summary[0]['summary_text'])
# 生成可下载文件
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp:
result_df.to_csv(tmp.name, index=False)
with open(tmp.name, "rb") as f:
st.download_button(
label="下载完整结果",
data=f,
file_name="analysis_results.csv",
mime="text/csv"
)
os.unlink(tmp.name)
except Exception as e:
st.error(f"分析过程中出现错误: {str(e)}")
finally:
progress_bar.empty()
status_text.empty()
if __name__ == "__main__":
main() |