Spaces:
Runtime error
Runtime error
File size: 6,780 Bytes
1ebdc35 8d3fb0e 43bfed9 5a52517 7838680 fa8bc0c 8d3fb0e aa64400 8d3fb0e 43bfed9 8d3fb0e bbff8a4 aa64400 43bfed9 92e8e59 bbff8a4 d2a9eb1 8d3fb0e bbff8a4 5a52517 8d3fb0e 5a52517 92e8e59 7838680 92e8e59 a0feee2 92e8e59 8d3fb0e 92e8e59 82ea97e 92e8e59 8d3fb0e 92e8e59 8d3fb0e 82ea97e 5a52517 8d3fb0e fa8bc0c a4f9546 fa8bc0c 82ea97e 8d3fb0e 1ebdc35 92e8e59 7473aec d2a9eb1 1ebdc35 530da97 8d3fb0e 66c69b6 1ebdc35 8d3fb0e 0e26b77 d5c7b7a 92e8e59 8d3fb0e a0feee2 d5c7b7a bbff8a4 4f896b1 defe9d7 9ba3c73 a0feee2 1ebdc35 a0feee2 8d3fb0e f99bb9b c43bf7c c0e7ea5 1ebdc35 a0feee2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
import moviepy.video.io.ImageSequenceClip
from PIL import Image
from pydub import AudioSegment
# Import everything needed to edit video clips
from moviepy.editor import *
import numpy as np
import mutagen
from mutagen.mp3 import MP3
import cv2
def resize(img_list):
print("** inside resize **")
print(img_list)
resize_img_list = []
for item in img_list:
im = Image.open(item)
imResize = im.resize((256,256), Image.ANTIALIAS)
resize_img_list.append(np.array(imResize))
print(type(resize_img_list[0]))
return resize_img_list
def merge_audio_video(entities_num, resize_img_list, text_input):
print("** inside merge aud vid **")
print(type(resize_img_list))
print(type(resize_img_list[0]))
#Convert text to speech using facebook's latest model from HF hub
speech = text2speech(text_input)
print('type of speech : ',type(speech))
print(speech)
wav_audio = AudioSegment.from_file(speech, "flac") #("/content/gdrive/My Drive/AI/audio1.flac", "flac")
#convert flac to mp3 audio format
print('flac audio read', type(wav_audio))
wav_audio.export("audio.mp3", format="mp3") #("/content/gdrive/My Drive/AI/audio1.mp3", format="mp3")
print('flac audio converted to mp3 audio' )
print('now getting duration of this mp3 audio' )
#getting audio clip's duration
audio_length = int(MP3("audio.mp3").info.length)
#Calculate the desired frame per second based on given audio length and entities identified
fps= entities_num / audio_length #length of audio file
fps = float(format(fps, '.5f'))
print('fps is: ',fps)
#String a list of images into a video and write to memory
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(resize_img_list, fps=fps)
clip.write_videofile('my_vid_tmp.mp4')
print('video clip created from images')
# loading video file
print('Starting video and audio merge')
videoclip = VideoFileClip('my_vid_tmp.mp4') #("/content/gdrive/My Drive/AI/my_video1.mp4")
print('loading video-clip audio')
# loading audio file
audioclip = AudioFileClip('audio.mp3') #.subclip(0, 15)
print('loading mp3-format audio')
# adding audio to the video clip
mergedclip = videoclip.set_audio(audioclip)
print('video and audio merged')
#Getting size and frame count of merged video file
print('Getting size and frame count of merged video file')
duration = mergedclip.duration
frame_count = mergedclip.fps
print('duration is:',duration)
print('frame count :', frame_count)
return mergedclip
fastspeech = gr.Interface.load("huggingface/facebook/fastspeech2-en-ljspeech")
def text2speech(text):
print('inside testtospeech')
print(type(fastspeech))
print(fastspeech)
speech = fastspeech(text)
print(type(speech))
print(speech)
return speech
def engine(text_input):
print(" ** Inside Enngine **")
#Extract entities from text
ner = gr.Interface.load("huggingface/flair/ner-english-ontonotes-large")
entities = ner(text_input)
entities = [tupl for tupl in entities if None not in tupl]
entities_num = len(entities)
#Generate images using multimodelart's space for each entity identified above
img_list = []
for ent in entities:
img = gr.Interface.load("spaces/multimodalart/latentdiffusion")(ent[0],'50','256','256','1',10)[0]
img_list.append(img)
print('img_list size:',len(img_list))
#Resizing all images produced to same size
resize_img_list = resize(img_list)
print('back from resize')
#Merge video and audio created above
mergedclip = merge_audio_video(entities_num, resize_img_list, text_input)
print('Back in engine')
print(' merged clip type :',type(mergedclip))
print('Writing the merged video clip to a file')
mergedclip.to_videofile('mergedvideo.mp4')
print('mergedvideo.mp4 created')
return 'mergedvideo.mp4'
app = gr.Interface(engine,
gr.inputs.Textbox(lines=5, label="Input Text"),
gr.outputs.Video(type=None, label='Final Merged video'), href='https://huggingface.co/flair/ner-english-ontonotes-large' target='_blank'
description="Firstly, generates speech from input-text using facebook's fastspeech2-en-ljspeech from hub.<br>Then, takes the input-text and extracts the entities in it using Flair NER model from <a href='https://huggingface.co/flair/ner-english-ontonotes-large' target='_blank'>HF Hub</a>. <br>Then, generate images using <a href='https://huggingface.co/spaces/multimodalart/latentdiffusion' target='_blank'>Multimodalart Space</a> for every entity separately.<br>Creates a video by stringing all the entity-images together. <br>Lastly, Fuses the AI enerated audio and video together to create a coherent movie for you to watch. <br><br>A fun little app that lets you turn your text to video (well, in some ways atleast :) ). More the entities in your text, More time to build the output, More fun" ,
examples=["On April 17th Sunday George celebrated Easter. He is staying at Empire State building with his parents. He is a citizen of Canada and speaks English and French fluently. His role model is former president Obama. He got 1000 dollar from his mother to visit Disney World and to buy new iPhone mobile. George likes watching Game of Thrones.", "April is the month of Easter weekend. Visit places like Statue of Liberty with friends. Take at least 200 dollars in cash with you. Use Android phone to find places in Newyork City."],
title="Generate Video from Text",
article="<div>For best results, make sure to enter a text that has entities listed on model card for flair/ner-english-ontonotes-large. Some examples of type of entities that will be helpful are - Date values, event names, building names, languages, locations, money value, organization names, famous people names, products and so on.</div><br><h4 style='font-size: 110%;margin-top:1em'>Who owns the videos produced by this demo?</h4><div>(Borrowing this from multimodalart spaces)Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>"
).launch(enable_queue=True, debug=True)
|