Spaces:
Runtime error
Runtime error
util.py
Browse files
util.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from inspect import isfunction
|
| 7 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def log_txt_as_img(wh, xc, size=10):
|
| 11 |
+
# wh a tuple of (width, height)
|
| 12 |
+
# xc a list of captions to plot
|
| 13 |
+
b = len(xc)
|
| 14 |
+
txts = list()
|
| 15 |
+
for bi in range(b):
|
| 16 |
+
txt = Image.new("RGB", wh, color="white")
|
| 17 |
+
draw = ImageDraw.Draw(txt)
|
| 18 |
+
font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
|
| 19 |
+
nc = int(40 * (wh[0] / 256))
|
| 20 |
+
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
|
| 21 |
+
|
| 22 |
+
try:
|
| 23 |
+
draw.text((0, 0), lines, fill="black", font=font)
|
| 24 |
+
except UnicodeEncodeError:
|
| 25 |
+
print("Cant encode string for logging. Skipping.")
|
| 26 |
+
|
| 27 |
+
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
| 28 |
+
txts.append(txt)
|
| 29 |
+
txts = np.stack(txts)
|
| 30 |
+
txts = torch.tensor(txts)
|
| 31 |
+
return txts
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def ismap(x):
|
| 35 |
+
if not isinstance(x, torch.Tensor):
|
| 36 |
+
return False
|
| 37 |
+
return (len(x.shape) == 4) and (x.shape[1] > 3)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def isimage(x):
|
| 41 |
+
if not isinstance(x,torch.Tensor):
|
| 42 |
+
return False
|
| 43 |
+
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def exists(x):
|
| 47 |
+
return x is not None
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def default(val, d):
|
| 51 |
+
if exists(val):
|
| 52 |
+
return val
|
| 53 |
+
return d() if isfunction(d) else d
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def mean_flat(tensor):
|
| 57 |
+
"""
|
| 58 |
+
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
|
| 59 |
+
Take the mean over all non-batch dimensions.
|
| 60 |
+
"""
|
| 61 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def count_params(model, verbose=False):
|
| 65 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 66 |
+
if verbose:
|
| 67 |
+
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
| 68 |
+
return total_params
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def instantiate_from_config(config):
|
| 72 |
+
if not "target" in config:
|
| 73 |
+
if config == '__is_first_stage__':
|
| 74 |
+
return None
|
| 75 |
+
elif config == "__is_unconditional__":
|
| 76 |
+
return None
|
| 77 |
+
raise KeyError("Expected key `target` to instantiate.")
|
| 78 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def get_obj_from_str(string, reload=False):
|
| 82 |
+
module, cls = string.rsplit(".", 1)
|
| 83 |
+
if reload:
|
| 84 |
+
module_imp = importlib.import_module(module)
|
| 85 |
+
importlib.reload(module_imp)
|
| 86 |
+
return getattr(importlib.import_module(module, package=None), cls)
|