Spaces:
Runtime error
Runtime error
- distributions.py +92 -0
distributions.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AbstractDistribution:
|
| 6 |
+
def sample(self):
|
| 7 |
+
raise NotImplementedError()
|
| 8 |
+
|
| 9 |
+
def mode(self):
|
| 10 |
+
raise NotImplementedError()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DiracDistribution(AbstractDistribution):
|
| 14 |
+
def __init__(self, value):
|
| 15 |
+
self.value = value
|
| 16 |
+
|
| 17 |
+
def sample(self):
|
| 18 |
+
return self.value
|
| 19 |
+
|
| 20 |
+
def mode(self):
|
| 21 |
+
return self.value
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class DiagonalGaussianDistribution(object):
|
| 25 |
+
def __init__(self, parameters, deterministic=False):
|
| 26 |
+
self.parameters = parameters
|
| 27 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
| 28 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
| 29 |
+
self.deterministic = deterministic
|
| 30 |
+
self.std = torch.exp(0.5 * self.logvar)
|
| 31 |
+
self.var = torch.exp(self.logvar)
|
| 32 |
+
if self.deterministic:
|
| 33 |
+
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
| 34 |
+
|
| 35 |
+
def sample(self):
|
| 36 |
+
x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
| 37 |
+
return x
|
| 38 |
+
|
| 39 |
+
def kl(self, other=None):
|
| 40 |
+
if self.deterministic:
|
| 41 |
+
return torch.Tensor([0.])
|
| 42 |
+
else:
|
| 43 |
+
if other is None:
|
| 44 |
+
return 0.5 * torch.sum(torch.pow(self.mean, 2)
|
| 45 |
+
+ self.var - 1.0 - self.logvar,
|
| 46 |
+
dim=[1, 2, 3])
|
| 47 |
+
else:
|
| 48 |
+
return 0.5 * torch.sum(
|
| 49 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
| 50 |
+
+ self.var / other.var - 1.0 - self.logvar + other.logvar,
|
| 51 |
+
dim=[1, 2, 3])
|
| 52 |
+
|
| 53 |
+
def nll(self, sample, dims=[1,2,3]):
|
| 54 |
+
if self.deterministic:
|
| 55 |
+
return torch.Tensor([0.])
|
| 56 |
+
logtwopi = np.log(2.0 * np.pi)
|
| 57 |
+
return 0.5 * torch.sum(
|
| 58 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
| 59 |
+
dim=dims)
|
| 60 |
+
|
| 61 |
+
def mode(self):
|
| 62 |
+
return self.mean
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
| 66 |
+
"""
|
| 67 |
+
source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
|
| 68 |
+
Compute the KL divergence between two gaussians.
|
| 69 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
| 70 |
+
scalars, among other use cases.
|
| 71 |
+
"""
|
| 72 |
+
tensor = None
|
| 73 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
| 74 |
+
if isinstance(obj, torch.Tensor):
|
| 75 |
+
tensor = obj
|
| 76 |
+
break
|
| 77 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
| 78 |
+
|
| 79 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
| 80 |
+
# Tensors, but it does not work for torch.exp().
|
| 81 |
+
logvar1, logvar2 = [
|
| 82 |
+
x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
|
| 83 |
+
for x in (logvar1, logvar2)
|
| 84 |
+
]
|
| 85 |
+
|
| 86 |
+
return 0.5 * (
|
| 87 |
+
-1.0
|
| 88 |
+
+ logvar2
|
| 89 |
+
- logvar1
|
| 90 |
+
+ torch.exp(logvar1 - logvar2)
|
| 91 |
+
+ ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
|
| 92 |
+
)
|