Spaces:
Runtime error
Runtime error
- attention.py +261 -0
attention.py
ADDED
|
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from inspect import isfunction
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn, einsum
|
| 6 |
+
from einops import rearrange, repeat
|
| 7 |
+
|
| 8 |
+
from ldm.modules.diffusionmodules.util import checkpoint
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def exists(val):
|
| 12 |
+
return val is not None
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def uniq(arr):
|
| 16 |
+
return{el: True for el in arr}.keys()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def default(val, d):
|
| 20 |
+
if exists(val):
|
| 21 |
+
return val
|
| 22 |
+
return d() if isfunction(d) else d
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def max_neg_value(t):
|
| 26 |
+
return -torch.finfo(t.dtype).max
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def init_(tensor):
|
| 30 |
+
dim = tensor.shape[-1]
|
| 31 |
+
std = 1 / math.sqrt(dim)
|
| 32 |
+
tensor.uniform_(-std, std)
|
| 33 |
+
return tensor
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# feedforward
|
| 37 |
+
class GEGLU(nn.Module):
|
| 38 |
+
def __init__(self, dim_in, dim_out):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
| 41 |
+
|
| 42 |
+
def forward(self, x):
|
| 43 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
| 44 |
+
return x * F.gelu(gate)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class FeedForward(nn.Module):
|
| 48 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
| 49 |
+
super().__init__()
|
| 50 |
+
inner_dim = int(dim * mult)
|
| 51 |
+
dim_out = default(dim_out, dim)
|
| 52 |
+
project_in = nn.Sequential(
|
| 53 |
+
nn.Linear(dim, inner_dim),
|
| 54 |
+
nn.GELU()
|
| 55 |
+
) if not glu else GEGLU(dim, inner_dim)
|
| 56 |
+
|
| 57 |
+
self.net = nn.Sequential(
|
| 58 |
+
project_in,
|
| 59 |
+
nn.Dropout(dropout),
|
| 60 |
+
nn.Linear(inner_dim, dim_out)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
def forward(self, x):
|
| 64 |
+
return self.net(x)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def zero_module(module):
|
| 68 |
+
"""
|
| 69 |
+
Zero out the parameters of a module and return it.
|
| 70 |
+
"""
|
| 71 |
+
for p in module.parameters():
|
| 72 |
+
p.detach().zero_()
|
| 73 |
+
return module
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def Normalize(in_channels):
|
| 77 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class LinearAttention(nn.Module):
|
| 81 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.heads = heads
|
| 84 |
+
hidden_dim = dim_head * heads
|
| 85 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
| 86 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
| 87 |
+
|
| 88 |
+
def forward(self, x):
|
| 89 |
+
b, c, h, w = x.shape
|
| 90 |
+
qkv = self.to_qkv(x)
|
| 91 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
| 92 |
+
k = k.softmax(dim=-1)
|
| 93 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
| 94 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
| 95 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
| 96 |
+
return self.to_out(out)
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class SpatialSelfAttention(nn.Module):
|
| 100 |
+
def __init__(self, in_channels):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.in_channels = in_channels
|
| 103 |
+
|
| 104 |
+
self.norm = Normalize(in_channels)
|
| 105 |
+
self.q = torch.nn.Conv2d(in_channels,
|
| 106 |
+
in_channels,
|
| 107 |
+
kernel_size=1,
|
| 108 |
+
stride=1,
|
| 109 |
+
padding=0)
|
| 110 |
+
self.k = torch.nn.Conv2d(in_channels,
|
| 111 |
+
in_channels,
|
| 112 |
+
kernel_size=1,
|
| 113 |
+
stride=1,
|
| 114 |
+
padding=0)
|
| 115 |
+
self.v = torch.nn.Conv2d(in_channels,
|
| 116 |
+
in_channels,
|
| 117 |
+
kernel_size=1,
|
| 118 |
+
stride=1,
|
| 119 |
+
padding=0)
|
| 120 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
| 121 |
+
in_channels,
|
| 122 |
+
kernel_size=1,
|
| 123 |
+
stride=1,
|
| 124 |
+
padding=0)
|
| 125 |
+
|
| 126 |
+
def forward(self, x):
|
| 127 |
+
h_ = x
|
| 128 |
+
h_ = self.norm(h_)
|
| 129 |
+
q = self.q(h_)
|
| 130 |
+
k = self.k(h_)
|
| 131 |
+
v = self.v(h_)
|
| 132 |
+
|
| 133 |
+
# compute attention
|
| 134 |
+
b,c,h,w = q.shape
|
| 135 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
| 136 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
| 137 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
| 138 |
+
|
| 139 |
+
w_ = w_ * (int(c)**(-0.5))
|
| 140 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
| 141 |
+
|
| 142 |
+
# attend to values
|
| 143 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
| 144 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
| 145 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
| 146 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
| 147 |
+
h_ = self.proj_out(h_)
|
| 148 |
+
|
| 149 |
+
return x+h_
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class CrossAttention(nn.Module):
|
| 153 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
| 154 |
+
super().__init__()
|
| 155 |
+
inner_dim = dim_head * heads
|
| 156 |
+
context_dim = default(context_dim, query_dim)
|
| 157 |
+
|
| 158 |
+
self.scale = dim_head ** -0.5
|
| 159 |
+
self.heads = heads
|
| 160 |
+
|
| 161 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
| 162 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
| 163 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
| 164 |
+
|
| 165 |
+
self.to_out = nn.Sequential(
|
| 166 |
+
nn.Linear(inner_dim, query_dim),
|
| 167 |
+
nn.Dropout(dropout)
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
def forward(self, x, context=None, mask=None):
|
| 171 |
+
h = self.heads
|
| 172 |
+
|
| 173 |
+
q = self.to_q(x)
|
| 174 |
+
context = default(context, x)
|
| 175 |
+
k = self.to_k(context)
|
| 176 |
+
v = self.to_v(context)
|
| 177 |
+
|
| 178 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
| 179 |
+
|
| 180 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
| 181 |
+
|
| 182 |
+
if exists(mask):
|
| 183 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
| 184 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
| 185 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
| 186 |
+
sim.masked_fill_(~mask, max_neg_value)
|
| 187 |
+
|
| 188 |
+
# attention, what we cannot get enough of
|
| 189 |
+
attn = sim.softmax(dim=-1)
|
| 190 |
+
|
| 191 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
| 192 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
| 193 |
+
return self.to_out(out)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class BasicTransformerBlock(nn.Module):
|
| 197 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
| 200 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
| 201 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
| 202 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
| 203 |
+
self.norm1 = nn.LayerNorm(dim)
|
| 204 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 205 |
+
self.norm3 = nn.LayerNorm(dim)
|
| 206 |
+
self.checkpoint = checkpoint
|
| 207 |
+
|
| 208 |
+
def forward(self, x, context=None):
|
| 209 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
| 210 |
+
|
| 211 |
+
def _forward(self, x, context=None):
|
| 212 |
+
x = self.attn1(self.norm1(x)) + x
|
| 213 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
| 214 |
+
x = self.ff(self.norm3(x)) + x
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class SpatialTransformer(nn.Module):
|
| 219 |
+
"""
|
| 220 |
+
Transformer block for image-like data.
|
| 221 |
+
First, project the input (aka embedding)
|
| 222 |
+
and reshape to b, t, d.
|
| 223 |
+
Then apply standard transformer action.
|
| 224 |
+
Finally, reshape to image
|
| 225 |
+
"""
|
| 226 |
+
def __init__(self, in_channels, n_heads, d_head,
|
| 227 |
+
depth=1, dropout=0., context_dim=None):
|
| 228 |
+
super().__init__()
|
| 229 |
+
self.in_channels = in_channels
|
| 230 |
+
inner_dim = n_heads * d_head
|
| 231 |
+
self.norm = Normalize(in_channels)
|
| 232 |
+
|
| 233 |
+
self.proj_in = nn.Conv2d(in_channels,
|
| 234 |
+
inner_dim,
|
| 235 |
+
kernel_size=1,
|
| 236 |
+
stride=1,
|
| 237 |
+
padding=0)
|
| 238 |
+
|
| 239 |
+
self.transformer_blocks = nn.ModuleList(
|
| 240 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
| 241 |
+
for d in range(depth)]
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
| 245 |
+
in_channels,
|
| 246 |
+
kernel_size=1,
|
| 247 |
+
stride=1,
|
| 248 |
+
padding=0))
|
| 249 |
+
|
| 250 |
+
def forward(self, x, context=None):
|
| 251 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
| 252 |
+
b, c, h, w = x.shape
|
| 253 |
+
x_in = x
|
| 254 |
+
x = self.norm(x)
|
| 255 |
+
x = self.proj_in(x)
|
| 256 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
| 257 |
+
for block in self.transformer_blocks:
|
| 258 |
+
x = block(x, context=context)
|
| 259 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
| 260 |
+
x = self.proj_out(x)
|
| 261 |
+
return x + x_in
|