ysharma's picture
ysharma HF staff
Update app.py
ecec021 verified
from crewai import Agent, Task, Crew
import gradio as gr
from gradio import ChatMessage
import asyncio
import re
import sys
from typing import List, Generator
import os
from dotenv import load_dotenv
import threading
from langchain_openai import ChatOpenAI
class OutputParser:
def __init__(self):
self.buffer = ""
self.current_agent = None
self.final_article_sent = False
self.message_queue = {
"Content Planner": [],
"Content Writer": [],
"Editor": []
}
self.agent_sequence = ["Content Planner", "Content Writer", "Editor"]
def format_output(self, raw_content: str, agent_name: str) -> str:
"""Format the output content based on agent type."""
if agent_name == "Content Planner":
# Clean up the planner's output to make it more readable
lines = raw_content.split('\n')
formatted_lines = []
for line in lines:
# Remove number prefixes and clean up
line = re.sub(r'^\d+\.\s*', '', line.strip())
# Make text size normal by removing markdown formatting
line = re.sub(r'^#+\s*', '', line)
if line:
formatted_lines.append(line)
return '\n\n'.join(formatted_lines)
elif agent_name == "Content Writer":
# Clean up writer's output to make it more readable
# Remove markdown headers but keep the text
content = re.sub(r'^#+\s*(.+)$', r'\1', raw_content, flags=re.MULTILINE)
# Remove multiple newlines
content = re.sub(r'\n{3,}', '\n\n', content)
return content.strip()
return raw_content.strip()
def parse_output(self, text: str) -> List[ChatMessage]:
messages = []
cleaned_text = re.sub(r'\x1B\[[0-9;]*[mK]', '', text)
# Look for working agent declarations
agent_match = re.search(r'\[DEBUG\]: == Working Agent: (.*?)(?=\n|$)', cleaned_text)
if agent_match:
self.current_agent = agent_match.group(1)
self.message_queue[self.current_agent].append(ChatMessage(
role="assistant",
content=f"Starting work...",
metadata={"title": f"πŸ€– {self.current_agent}"}
))
# Look for task information
task_match = re.search(r'\[INFO\]: == Starting Task: (.*?)(?=\n\n|\n> Entering|$)', cleaned_text, re.DOTALL)
if task_match and self.current_agent:
task_content = task_match.group(1).strip()
self.message_queue[self.current_agent].append(ChatMessage(
role="assistant",
content=task_content,
metadata={"title": f"πŸ“‹ Task for {self.current_agent}"}
))
# Look for agent outputs in debug messages
debug_match = re.search(r'\[DEBUG\]: == \[(.*?)\] Task output: (.*?)(?=\[DEBUG\]|$)', cleaned_text, re.DOTALL)
if debug_match:
agent_name = debug_match.group(1)
output_content = debug_match.group(2).strip()
# Format the output content
formatted_content = self.format_output(output_content, agent_name)
if agent_name == "Editor" and not self.final_article_sent:
self.message_queue[agent_name].append(ChatMessage(
role="assistant",
content="Final article is ready!",
metadata={"title": "πŸ“ Final Article"}
))
self.message_queue[agent_name].append(ChatMessage(
role="assistant",
content=formatted_content
))
self.final_article_sent = True
elif agent_name != "Editor":
self.message_queue[agent_name].append(ChatMessage(
role="assistant",
content=formatted_content,
metadata={"title": f"πŸ’‘ Output from {agent_name}"}
))
# Return messages in the correct sequence
for agent in self.agent_sequence:
if self.message_queue[agent]:
messages.extend(self.message_queue[agent])
self.message_queue[agent] = []
return messages
class StreamingCapture:
def __init__(self):
self.buffer = ""
def write(self, text):
self.buffer += text
return len(text)
def flush(self):
pass
class ArticleCrew:
def __init__(self, api_key: str = None):
self.api_key = api_key
self.initialize_agents()
def initialize_agents(self):
# Create a ChatOpenAI instance with the API key
llm = ChatOpenAI(
openai_api_key=self.api_key,
temperature=0.7,
model="gpt-4"
)
# Initialize agents with the LLM
self.planner = Agent(
role="Content Planner",
goal="Plan engaging and factually accurate content on {topic}",
backstory="You're working on planning a blog article about the topic: {topic}. "
"You collect information that helps the audience learn something "
"and make informed decisions.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.writer = Agent(
role="Content Writer",
goal="Write insightful and factually accurate opinion piece about the topic: {topic}",
backstory="You're working on writing a new opinion piece about the topic: {topic}. "
"You base your writing on the work of the Content Planner.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.editor = Agent(
role="Editor",
goal="Edit a given blog post to align with the writing style",
backstory="You are an editor who receives a blog post from the Content Writer.",
allow_delegation=False,
verbose=True,
llm=llm
)
self.output_parser = OutputParser()
def create_tasks(self, topic: str):
plan_task = Task(
description=(
f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
f"2. Identify the target audience, considering their interests and pain points.\n"
f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
f"4. Include SEO keywords and relevant data or sources."
),
expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
agent=self.planner
)
write_task = Task(
description=(
"1. Use the content plan to craft a compelling blog post.\n"
"2. Incorporate SEO keywords naturally.\n"
"3. Sections/Subtitles are properly named in an engaging manner.\n"
"4. Ensure proper structure with introduction, body, and conclusion.\n"
"5. Proofread for grammatical errors."
),
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.writer
)
edit_task = Task(
description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.editor
)
return [plan_task, write_task, edit_task]
async def process_article(self, topic: str) -> Generator[List[ChatMessage], None, None]:
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=2
)
capture = StreamingCapture()
original_stdout = sys.stdout
sys.stdout = capture
try:
# Start the crew task in a separate thread to not block streaming
result_container = []
def run_crew():
try:
result = crew.kickoff(inputs={"topic": topic})
result_container.append(result)
except Exception as e:
result_container.append(e)
thread = threading.Thread(target=run_crew)
thread.start()
# Stream output while the crew is working
last_processed = 0
while thread.is_alive() or last_processed < len(capture.buffer):
if len(capture.buffer) > last_processed:
new_content = capture.buffer[last_processed:]
messages = self.output_parser.parse_output(new_content)
if messages:
for msg in messages:
yield [msg]
last_processed = len(capture.buffer)
await asyncio.sleep(0.1)
# Check if we got a result or an error
if result_container and not isinstance(result_container[0], Exception):
# Final messages already sent by the parser
pass
else:
yield [ChatMessage(
role="assistant",
content="An error occurred while generating the article.",
metadata={"title": "❌ Error"}
)]
finally:
sys.stdout = original_stdout
def create_demo():
article_crew = None # Initialize as None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ“ AI Article Writing Crew")
gr.Markdown("Watch as this AI Crew collaborates to create your article! This application utilizes [CrewAI](https://www.crewai.com/) agents: Content Planner, Content Writer, and Content Editor, to write an article on any topic you choose. To get started, enter your OpenAI API Key below and press Enter!")
openai_api_key = gr.Textbox(
label='OpenAI API Key',
type='password',
placeholder='Type your OpenAI API key and press Enter!',
interactive=True)
chatbot = gr.Chatbot(
label="Writing Process",
avatar_images=(None, "https://avatars.githubusercontent.com/u/170677839?v=4"),
height=700,
type="messages",
show_label=True,
visible=False
)
with gr.Row(equal_height=True):
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter the topic you want an article about...",
scale=4,
visible=False
)
async def process_input(topic, history, openai_api_key):
nonlocal article_crew
# Initialize ArticleCrew with the API key if not already initialized
if article_crew is None:
article_crew = ArticleCrew(api_key=openai_api_key)
history.append(ChatMessage(role="user", content=f"Write an article about: {topic}"))
yield history
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
btn = gr.Button("Write Article", variant="primary", scale=1, visible=False)
def show_interface():
return {
openai_api_key: gr.Textbox(visible=False),
chatbot: gr.Chatbot(visible=True),
topic: gr.Textbox(visible=True),
btn: gr.Button(visible=True)
}
openai_api_key.submit(
show_interface,
None,
[openai_api_key, chatbot, topic, btn]
)
btn.click(
process_input,
inputs=[topic, chatbot, openai_api_key],
outputs=[chatbot]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch()