File size: 9,149 Bytes
c3fdfdd f9bf036 c3fdfdd f9bf036 ce25288 f9bf036 ce25288 f9bf036 ce25288 f9bf036 ce25288 f9bf036 c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd 8bbbd7a c3fdfdd f9bf036 c3fdfdd f9bf036 c3fdfdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
from crewai import Agent, Task, Crew
import gradio as gr
from gradio import ChatMessage
import asyncio
import re
import sys
from typing import List, Generator
import os
from dotenv import load_dotenv
import threading
class OutputParser:
def __init__(self):
self.buffer = ""
self.current_agent = None
self.final_article_sent = False # Add this flag
def parse_output(self, text: str) -> List[ChatMessage]:
messages = []
# Clean ANSI codes
cleaned_text = re.sub(r'\x1B\[[0-9;]*[mK]', '', text)
# Look for working agent declarations
agent_match = re.search(r'\[DEBUG\]: == Working Agent: (.*?)(?=\n|$)', cleaned_text)
if agent_match:
self.current_agent = agent_match.group(1)
messages.append(ChatMessage(
role="assistant",
content=f"Starting work...",
metadata={"title": f"π€ {self.current_agent}"}
))
# Look for task information
task_match = re.search(r'\[INFO\]: == Starting Task: (.*?)(?=\n\n|\n> Entering|$)', cleaned_text, re.DOTALL)
if task_match and self.current_agent:
task_content = task_match.group(1).strip()
messages.append(ChatMessage(
role="assistant",
content=task_content,
metadata={"title": f"π Task for {self.current_agent}"}
))
# Look for final answers from all agents
if "Final Answer:" in cleaned_text:
answer_match = re.search(r'Final Answer:\s*(.*?)(?=\n> Finished chain|$)', cleaned_text, re.DOTALL)
if answer_match:
answer_content = answer_match.group(1).strip()
if self.current_agent == "Editor" and not self.final_article_sent:
# This is the final article - send only once
messages.append(ChatMessage(
role="assistant",
content="Final Article",
metadata={"title": "π Final Article"}
))
messages.append(ChatMessage(
role="assistant",
content=answer_content
))
self.final_article_sent = True
elif self.current_agent != "Editor":
# This is an intermediate output (Planner or Writer)
messages.append(ChatMessage(
role="assistant",
content=answer_content,
metadata={"title": f"π‘ Output from {self.current_agent}"}
))
return messages
class StreamingCapture:
def __init__(self):
self.buffer = ""
def write(self, text):
self.buffer += text
return len(text)
def flush(self):
pass
class ArticleCrew:
def __init__(self):
# Initialize agents
self.planner = Agent(
role="Content Planner",
goal="Plan engaging and factually accurate content on {topic}",
backstory="You're working on planning a blog article about the topic: {topic}. "
"You collect information that helps the audience learn something "
"and make informed decisions.",
allow_delegation=False,
verbose=True
)
self.writer = Agent(
role="Content Writer",
goal="Write insightful and factually accurate opinion piece about the topic: {topic}",
backstory="You're working on writing a new opinion piece about the topic: {topic}. "
"You base your writing on the work of the Content Planner.",
allow_delegation=False,
verbose=True
)
self.editor = Agent(
role="Editor",
goal="Edit a given blog post to align with the writing style",
backstory="You are an editor who receives a blog post from the Content Writer.",
allow_delegation=False,
verbose=True
)
self.output_parser = OutputParser()
def create_tasks(self, topic: str):
plan_task = Task(
description=(
f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
f"2. Identify the target audience, considering their interests and pain points.\n"
f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
f"4. Include SEO keywords and relevant data or sources."
),
expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
agent=self.planner
)
write_task = Task(
description=(
"1. Use the content plan to craft a compelling blog post.\n"
"2. Incorporate SEO keywords naturally.\n"
"3. Sections/Subtitles are properly named in an engaging manner.\n"
"4. Ensure proper structure with introduction, body, and conclusion.\n"
"5. Proofread for grammatical errors."
),
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.writer
)
edit_task = Task(
description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.editor
)
return [plan_task, write_task, edit_task]
async def process_article(self, topic: str) -> Generator[List[ChatMessage], None, None]:
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=2
)
capture = StreamingCapture()
original_stdout = sys.stdout
sys.stdout = capture
try:
# Start the crew task in a separate thread to not block streaming
result_container = []
def run_crew():
try:
result = crew.kickoff(inputs={"topic": topic})
result_container.append(result)
except Exception as e:
result_container.append(e)
thread = threading.Thread(target=run_crew)
thread.start()
# Stream output while the crew is working
last_processed = 0
while thread.is_alive() or last_processed < len(capture.buffer):
if len(capture.buffer) > last_processed:
new_content = capture.buffer[last_processed:]
messages = self.output_parser.parse_output(new_content)
if messages:
for msg in messages:
yield [msg]
last_processed = len(capture.buffer)
await asyncio.sleep(0.1)
# Check if we got a result or an error
if result_container and not isinstance(result_container[0], Exception):
# Final messages already sent by the parser
pass
else:
yield [ChatMessage(
role="assistant",
content="An error occurred while generating the article.",
metadata={"title": "β Error"}
)]
finally:
sys.stdout = original_stdout
def create_demo():
article_crew = ArticleCrew()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π AI Article Writing Crew")
gr.Markdown("Watch as our AI crew collaborates to create your article!")
chatbot = gr.Chatbot(
label="Writing Process",
avatar_images=(None, "https://avatars.githubusercontent.com/u/170677839?v=4"),
height=700,
type="messages",
show_label=True
)
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter the topic you want an article about...",
lines=2
)
async def process_input(topic, history):
history.append(ChatMessage(role="user", content=f"Write an article about: {topic}"))
yield history
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
btn = gr.Button("Write Article", variant="primary")
btn.click(
process_input,
inputs=[topic, chatbot],
outputs=[chatbot]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(debug=True, share=True) |