File size: 5,895 Bytes
c3fdfdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from crewai import Agent, Task, Crew
import gradio as gr
from gradio import ChatMessage
import asyncio
import re
import sys
from typing import List, Generator
import os
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
load_dotenv()
class ArticleCrew:
def __init__(self):
# Agent definitions remain the same
self.planner = Agent(
role="Content Planner",
goal="Plan engaging and factually accurate content on {topic}",
backstory="You're working on planning a blog article about the topic: {topic}. "
"You collect information that helps the audience learn something "
"and make informed decisions.",
allow_delegation=False,
verbose=True
)
self.writer = Agent(
role="Content Writer",
goal="Write insightful and factually accurate opinion piece about the topic: {topic}",
backstory="You're working on writing a new opinion piece about the topic: {topic}. "
"You base your writing on the work of the Content Planner.",
allow_delegation=False,
verbose=True
)
self.editor = Agent(
role="Editor",
goal="Edit a given blog post to align with the writing style",
backstory="You are an editor who receives a blog post from the Content Writer.",
allow_delegation=False,
verbose=True
)
self.output_parser = OutputParser()
def create_tasks(self, topic: str):
# Task definitions remain the same
plan_task = Task(
description=(
f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
f"2. Identify the target audience, considering their interests and pain points.\n"
f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
f"4. Include SEO keywords and relevant data or sources."
),
expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
agent=self.planner
)
write_task = Task(
description=(
"1. Use the content plan to craft a compelling blog post.\n"
"2. Incorporate SEO keywords naturally.\n"
"3. Sections/Subtitles are properly named in an engaging manner.\n"
"4. Ensure proper structure with introduction, body, and conclusion.\n"
"5. Proofread for grammatical errors."
),
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.writer
)
edit_task = Task(
description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
expected_output="A well-written blog post in markdown format, ready for publication.",
agent=self.editor
)
return [plan_task, write_task, edit_task]
async def process_article(self, topic: str) -> Generator[List[ChatMessage], None, None]:
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=2
)
class StreamCapture:
def __init__(self):
self.data = []
self.current_chunk = ""
def write(self, text):
self.current_chunk += text
if "\n" in text:
self.data.append(self.current_chunk)
self.current_chunk = ""
return len(text)
stream = StreamCapture()
original_stdout = sys.stdout
sys.stdout = stream
try:
result = crew.kickoff(inputs={"topic": topic})
# Process intermediate outputs
for chunk in stream.data:
messages = self.output_parser.parse_output(chunk)
if messages:
for msg in messages:
yield [msg]
# Send final result
yield [ChatMessage(
role="assistant",
content=result,
metadata={"title": "π Final Article"}
)]
finally:
sys.stdout = original_stdout
def create_demo():
article_crew = ArticleCrew()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π AI Article Writing Crew")
gr.Markdown("Watch as our AI crew collaborates to create your article!")
chatbot = gr.Chatbot(
label="Writing Process",
avatar_images=(None, "π€"),
height=700,
type="messages",
show_label=True
)
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter the topic you want an article about...",
lines=2
)
async def process_input(topic, history):
# Add user message as ChatMessage
history.append(ChatMessage(role="user", content=f"Write an article about: {topic}"))
yield history
# Process and add agent messages
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
btn = gr.Button("Write Article")
btn.click(
process_input,
inputs=[topic, chatbot],
outputs=[chatbot]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(debug=True, share=True) |