File size: 5,895 Bytes
c3fdfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from crewai import Agent, Task, Crew
import gradio as gr
from gradio import ChatMessage
import asyncio
import re
import sys
from typing import List, Generator
import os
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv

load_dotenv()

class ArticleCrew:
    def __init__(self):
        # Agent definitions remain the same
        self.planner = Agent(
            role="Content Planner",
            goal="Plan engaging and factually accurate content on {topic}",
            backstory="You're working on planning a blog article about the topic: {topic}. "
                     "You collect information that helps the audience learn something "
                     "and make informed decisions.",
            allow_delegation=False,
            verbose=True
        )
        
        self.writer = Agent(
            role="Content Writer",
            goal="Write insightful and factually accurate opinion piece about the topic: {topic}",
            backstory="You're working on writing a new opinion piece about the topic: {topic}. "
                     "You base your writing on the work of the Content Planner.",
            allow_delegation=False,
            verbose=True
        )
        
        self.editor = Agent(
            role="Editor",
            goal="Edit a given blog post to align with the writing style",
            backstory="You are an editor who receives a blog post from the Content Writer.",
            allow_delegation=False,
            verbose=True
        )
        
        self.output_parser = OutputParser()

    def create_tasks(self, topic: str):
        # Task definitions remain the same
        plan_task = Task(
            description=(
                f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
                f"2. Identify the target audience, considering their interests and pain points.\n"
                f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
                f"4. Include SEO keywords and relevant data or sources."
            ),
            expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
            agent=self.planner
        )

        write_task = Task(
            description=(
                "1. Use the content plan to craft a compelling blog post.\n"
                "2. Incorporate SEO keywords naturally.\n"
                "3. Sections/Subtitles are properly named in an engaging manner.\n"
                "4. Ensure proper structure with introduction, body, and conclusion.\n"
                "5. Proofread for grammatical errors."
            ),
            expected_output="A well-written blog post in markdown format, ready for publication.",
            agent=self.writer
        )

        edit_task = Task(
            description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
            expected_output="A well-written blog post in markdown format, ready for publication.",
            agent=self.editor
        )

        return [plan_task, write_task, edit_task]

    async def process_article(self, topic: str) -> Generator[List[ChatMessage], None, None]:
        crew = Crew(
            agents=[self.planner, self.writer, self.editor],
            tasks=self.create_tasks(topic),
            verbose=2
        )

        class StreamCapture:
            def __init__(self):
                self.data = []
                self.current_chunk = ""
            
            def write(self, text):
                self.current_chunk += text
                if "\n" in text:
                    self.data.append(self.current_chunk)
                    self.current_chunk = ""
                return len(text)

        stream = StreamCapture()
        original_stdout = sys.stdout
        sys.stdout = stream
        
        try:
            result = crew.kickoff(inputs={"topic": topic})
            
            # Process intermediate outputs
            for chunk in stream.data:
                messages = self.output_parser.parse_output(chunk)
                if messages:
                    for msg in messages:
                        yield [msg]
            
            # Send final result
            yield [ChatMessage(
                role="assistant",
                content=result,
                metadata={"title": "πŸ“ Final Article"}
            )]
        
        finally:
            sys.stdout = original_stdout

def create_demo():
    article_crew = ArticleCrew()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ“ AI Article Writing Crew")
        gr.Markdown("Watch as our AI crew collaborates to create your article!")
        
        chatbot = gr.Chatbot(
            label="Writing Process",
            avatar_images=(None, "πŸ€–"),
            height=700,
            type="messages",
            show_label=True
        )
        
        topic = gr.Textbox(
            label="Article Topic",
            placeholder="Enter the topic you want an article about...",
            lines=2
        )
        
        async def process_input(topic, history):
            # Add user message as ChatMessage
            history.append(ChatMessage(role="user", content=f"Write an article about: {topic}"))
            yield history
            
            # Process and add agent messages
            async for messages in article_crew.process_article(topic):
                history.extend(messages)
                yield history
        
        btn = gr.Button("Write Article")
        btn.click(
            process_input,
            inputs=[topic, chatbot],
            outputs=[chatbot]
        )

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(debug=True, share=True)