File size: 10,937 Bytes
a61f8e8
c3fdfdd
 
 
 
 
 
 
 
 
f9bf036
c3fdfdd
 
f9bf036
 
 
 
a61f8e8
 
 
 
 
 
 
f9bf036
a61f8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bf036
 
 
 
 
 
 
 
a61f8e8
f9bf036
 
 
 
 
ce25288
f9bf036
 
 
a61f8e8
f9bf036
 
 
 
a61f8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bf036
a61f8e8
 
 
 
 
ce25288
f9bf036
 
 
 
 
 
 
 
 
 
 
 
 
c3fdfdd
 
f9bf036
c3fdfdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9bf036
c3fdfdd
f9bf036
c3fdfdd
 
f9bf036
 
c3fdfdd
f9bf036
 
 
 
 
 
c3fdfdd
f9bf036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3fdfdd
 
 
 
 
 
 
 
 
 
 
 
 
8bbbd7a
c3fdfdd
 
 
 
2967cfa
c3fdfdd
2967cfa
 
 
 
 
 
 
c3fdfdd
2967cfa
 
c3fdfdd
2967cfa
 
 
 
 
 
 
c3fdfdd
 
 
 
 
 
 
 
 
 
f9bf036
a61f8e8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# This works even better 
from crewai import Agent, Task, Crew
import gradio as gr
from gradio import ChatMessage
import asyncio
import re
import sys
from typing import List, Generator
import os
from dotenv import load_dotenv
import threading


class OutputParser:
    def __init__(self):
        self.buffer = ""
        self.current_agent = None
        self.final_article_sent = False
        self.message_queue = {
            "Content Planner": [],
            "Content Writer": [],
            "Editor": []
        }
        self.agent_sequence = ["Content Planner", "Content Writer", "Editor"]
        
    def format_output(self, raw_content: str, agent_name: str) -> str:
        """Format the output content based on agent type."""
        if agent_name == "Content Planner":
            # Clean up the planner's output to make it more readable
            lines = raw_content.split('\n')
            formatted_lines = []
            for line in lines:
                # Remove number prefixes and clean up
                line = re.sub(r'^\d+\.\s*', '', line.strip())
                # Make text size normal by removing markdown formatting
                line = re.sub(r'^#+\s*', '', line)
                if line:
                    formatted_lines.append(line)
            return '\n\n'.join(formatted_lines)
        
        elif agent_name == "Content Writer":
            # Clean up writer's output to make it more readable
            # Remove markdown headers but keep the text
            content = re.sub(r'^#+\s*(.+)$', r'\1', raw_content, flags=re.MULTILINE)
            # Remove multiple newlines
            content = re.sub(r'\n{3,}', '\n\n', content)
            return content.strip()
            
        return raw_content.strip()

    def parse_output(self, text: str) -> List[ChatMessage]:
        messages = []
        cleaned_text = re.sub(r'\x1B\[[0-9;]*[mK]', '', text)
        
        # Look for working agent declarations
        agent_match = re.search(r'\[DEBUG\]: == Working Agent: (.*?)(?=\n|$)', cleaned_text)
        if agent_match:
            self.current_agent = agent_match.group(1)
            self.message_queue[self.current_agent].append(ChatMessage(
                role="assistant",
                content=f"Starting work...",
                metadata={"title": f"πŸ€– {self.current_agent}"}
            ))
        
        # Look for task information
        task_match = re.search(r'\[INFO\]: == Starting Task: (.*?)(?=\n\n|\n> Entering|$)', cleaned_text, re.DOTALL)
        if task_match and self.current_agent:
            task_content = task_match.group(1).strip()
            self.message_queue[self.current_agent].append(ChatMessage(
                role="assistant",
                content=task_content,
                metadata={"title": f"πŸ“‹ Task for {self.current_agent}"}
            ))

        # Look for agent outputs in debug messages
        debug_match = re.search(r'\[DEBUG\]: == \[(.*?)\] Task output: (.*?)(?=\[DEBUG\]|$)', cleaned_text, re.DOTALL)
        if debug_match:
            agent_name = debug_match.group(1)
            output_content = debug_match.group(2).strip()
            
            # Format the output content
            formatted_content = self.format_output(output_content, agent_name)
            
            if agent_name == "Editor" and not self.final_article_sent:
                self.message_queue[agent_name].append(ChatMessage(
                    role="assistant",
                    content="Final article is ready!",
                    metadata={"title": "πŸ“ Final Article"}
                ))
                self.message_queue[agent_name].append(ChatMessage(
                    role="assistant",
                    content=formatted_content
                ))
                self.final_article_sent = True
            elif agent_name != "Editor":
                self.message_queue[agent_name].append(ChatMessage(
                    role="assistant",
                    content=formatted_content,
                    metadata={"title": f"πŸ’‘ Output from {agent_name}"}
                ))
        
        # Return messages in the correct sequence
        for agent in self.agent_sequence:
            if self.message_queue[agent]:
                messages.extend(self.message_queue[agent])
                self.message_queue[agent] = []
                
        return messages

class StreamingCapture:
    def __init__(self):
        self.buffer = ""
    
    def write(self, text):
        self.buffer += text
        return len(text)
    
    def flush(self):
        pass

class ArticleCrew:
    def __init__(self):
        # Initialize agents
        self.planner = Agent(
            role="Content Planner",
            goal="Plan engaging and factually accurate content on {topic}",
            backstory="You're working on planning a blog article about the topic: {topic}. "
                     "You collect information that helps the audience learn something "
                     "and make informed decisions.",
            allow_delegation=False,
            verbose=True
        )
        
        self.writer = Agent(
            role="Content Writer",
            goal="Write insightful and factually accurate opinion piece about the topic: {topic}",
            backstory="You're working on writing a new opinion piece about the topic: {topic}. "
                     "You base your writing on the work of the Content Planner.",
            allow_delegation=False,
            verbose=True
        )
        
        self.editor = Agent(
            role="Editor",
            goal="Edit a given blog post to align with the writing style",
            backstory="You are an editor who receives a blog post from the Content Writer.",
            allow_delegation=False,
            verbose=True
        )
        
        self.output_parser = OutputParser()

    def create_tasks(self, topic: str):
        plan_task = Task(
            description=(
                f"1. Prioritize the latest trends, key players, and noteworthy news on {topic}.\n"
                f"2. Identify the target audience, considering their interests and pain points.\n"
                f"3. Develop a detailed content outline including introduction, key points, and call to action.\n"
                f"4. Include SEO keywords and relevant data or sources."
            ),
            expected_output="A comprehensive content plan document with an outline, audience analysis, SEO keywords, and resources.",
            agent=self.planner
        )

        write_task = Task(
            description=(
                "1. Use the content plan to craft a compelling blog post.\n"
                "2. Incorporate SEO keywords naturally.\n"
                "3. Sections/Subtitles are properly named in an engaging manner.\n"
                "4. Ensure proper structure with introduction, body, and conclusion.\n"
                "5. Proofread for grammatical errors."
            ),
            expected_output="A well-written blog post in markdown format, ready for publication.",
            agent=self.writer
        )

        edit_task = Task(
            description="Proofread the given blog post for grammatical errors and alignment with the brand's voice.",
            expected_output="A well-written blog post in markdown format, ready for publication.",
            agent=self.editor
        )

        return [plan_task, write_task, edit_task]

    async def process_article(self, topic: str) -> Generator[List[ChatMessage], None, None]:
        crew = Crew(
            agents=[self.planner, self.writer, self.editor],
            tasks=self.create_tasks(topic),
            verbose=2
        )

        capture = StreamingCapture()
        original_stdout = sys.stdout
        sys.stdout = capture
        
        try:
            # Start the crew task in a separate thread to not block streaming
            result_container = []
            
            def run_crew():
                try:
                    result = crew.kickoff(inputs={"topic": topic})
                    result_container.append(result)
                except Exception as e:
                    result_container.append(e)
            
            thread = threading.Thread(target=run_crew)
            thread.start()
            
            # Stream output while the crew is working
            last_processed = 0
            while thread.is_alive() or last_processed < len(capture.buffer):
                if len(capture.buffer) > last_processed:
                    new_content = capture.buffer[last_processed:]
                    messages = self.output_parser.parse_output(new_content)
                    if messages:
                        for msg in messages:
                            yield [msg]
                    last_processed = len(capture.buffer)
                await asyncio.sleep(0.1)
            
            # Check if we got a result or an error
            if result_container and not isinstance(result_container[0], Exception):
                # Final messages already sent by the parser
                pass
            else:
                yield [ChatMessage(
                    role="assistant",
                    content="An error occurred while generating the article.",
                    metadata={"title": "❌ Error"}
                )]
        
        finally:
            sys.stdout = original_stdout

def create_demo():
    article_crew = ArticleCrew()
    
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# πŸ“ AI Article Writing Crew")
        gr.Markdown("Watch as our AI crew collaborates to create your article!")
        
        chatbot = gr.Chatbot(
            label="Writing Process",
            avatar_images=(None, "https://avatars.githubusercontent.com/u/170677839?v=4"),
            height=700,
            type="messages",
            show_label=True
        )

        
        with gr.Row(equal_height=True):
            topic = gr.Textbox(
                label="Article Topic",
                placeholder="Enter the topic you want an article about...",
                #lines=2,
                scale=4
            )
            
            async def process_input(topic, history):
                history.append(ChatMessage(role="user", content=f"Write an article about: {topic}"))
                yield history
                
                async for messages in article_crew.process_article(topic):
                    history.extend(messages)
                    yield history
            
            btn = gr.Button("Write Article", variant="primary", scale=1)
            
        btn.click(
            process_input,
            inputs=[topic, chatbot],
            outputs=[chatbot]
        )

    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.queue()
    demo.launch(debug=True, share=True)