ysharma's picture
ysharma HF staff
updated libraries
490262d
raw
history blame
2.04 kB
import PIL
import requests
import torch
import gradio as gr
import random
from PIL import Image
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", safety_checker=None)
pipe.to("cuda")
pipe.enable_attention_slicing()
#image = PIL.Image.open("./example.png")
#image = PIL.ImageOps.exif_transpose(image)
#image = image.convert("RGB")
#image
#prompt = "turn him into cyborg"
#pipe(prompt, image=image, num_inference_steps=20, image_guidance_scale=1).images[0]
counter = 0
def chat(image_in, message, history): #, progress=gr.Progress(track_tqdm=True)):
#progress(0, desc="Starting...")
global counter
counter += 1
#if message == "revert": --to add revert functionality later
if counter > 1:
# Open the image
image_in = Image.open("./edited_image.png")
prompt = message #eg - "turn him into cyborg"
edited_image = pipe(prompt, image=image_in, num_inference_steps=20, image_guidance_scale=1).images[0]
edited_image.save("edited_image.png") #("./edited_image.png")
history = history or []
add_text_list = ["There you go ", "Enjoy your image! ", "Nice work! Wonder what you gonna do next! ", "Way to go! ", "Does this work for you? ", "Something like this? "]
#Resizing the image for better display
response = random.choice(add_text_list) + '<img src="/file=edited_image.png" style="width: 200px; height: 200px;">'
history.append((message, response))
return history, history
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image_in = gr.Image(type='pil', label="Original Image")
text_in = gr.Textbox()
state_in = gr.State()
b1 = gr.Button('Edit the image!')
chatbot = gr.Chatbot()
b1.click(chat,[image_in, text_in, state_in], [chatbot, state_in])
#demo.queue()
demo.launch(debug=True, width="80%", height=1500)