File size: 8,095 Bytes
ee3b2de
 
 
 
 
490262d
775e2c4
6752228
ee3b2de
 
6371eda
ee3b2de
0efff39
ee3b2de
 
 
 
6371eda
 
430f4ee
6371eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee3b2de
3fa258b
 
 
 
abf9f32
df8cf30
3fa258b
 
 
 
 
 
df8cf30
 
 
 
 
 
 
0b764ac
176f241
775e2c4
 
0efff39
39daff5
 
 
 
99642bc
 
39daff5
330dc1c
26049de
 
7f90752
df8cf30
4e6741b
 
 
 
26049de
330dc1c
 
39daff5
 
 
99642bc
 
ee3b2de
26049de
f5501f6
f06c5ef
0efff39
830976f
f06c5ef
830976f
99642bc
830976f
f06c5ef
 
39daff5
3fa258b
ee3b2de
 
2e812d1
bcd0b3f
6ab5788
 
df8cf30
a1dfe09
0efff39
430f4ee
a1dfe09
df8cf30
 
 
 
 
 
 
6ab5788
ee3b2de
 
 
 
 
3fa258b
ee3b2de
3fa258b
f5501f6
 
 
 
 
65a446a
 
26049de
3fa258b
7f9dcb6
ee3b2de
3fa258b
 
 
d850e97
 
1ac78b1
f5501f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import PIL
import requests
import torch
import gradio as gr
import random
from PIL import Image
import os
import time
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler

#Loading from Diffusers Library
model_id = "timbrooks/instruct-pix2pix"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") #, safety_checker=None)
pipe.to("cuda")
pipe.enable_attention_slicing()

counter = 0


help_text = """ Some notes from the official [instruct-pix2pix](https://huggingface.co/spaces/timbrooks/instruct-pix2pix) Space by the authors and from the official [Diffusers docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/pix2pix) -

If you're not getting what you want, there may be a few reasons:
1. Is the image not changing enough? Your guidance_scale may be too low. It should be >1. Higher guidance scale encourages to generate images 
that are closely linked to the text `prompt`, usually at the expense of lower image quality. This value dictates how similar the output should 
be to the input. This pipeline requires a value of at least `1`. It's possible your edit requires larger changes from the original image. 
                
2. Alternatively, you can toggle image_guidance_scale. Image guidance scale is to push the generated image towards the inital image. Image guidance 
                scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages to generate images that are closely 
                linked to the source image `image`, usually at the expense of lower image quality.  

3. I have observed that rephrasing the instruction sometimes improves results (e.g., "turn him into a dog" vs. "make him a dog" vs. "as a dog").

4. Increasing the number of steps sometimes improves results.

5. Do faces look weird? The Stable Diffusion autoencoder has a hard time with faces that are small in the image. Try:
    * Cropping the image so the face takes up a larger portion of the frame.
"""

def previous(image):
    return image 

def chat(image_in, in_steps, in_guidance_scale, in_img_guidance_scale, image_hid, img_name, counter_out, image_oneup, prompt, history, progress=gr.Progress(track_tqdm=True)):
    progress(0, desc="Starting...")
    if prompt.lower() == 'reverse' : #--to add revert functionality later
        history = history or []
        temp_img_name = img_name[:-4]+str(int(time.time()))+'.png' 
        image_oneup.save(temp_img_name)
        response = 'Reverted to the last image ' + '<img src="/file=' + temp_img_name + '">'  
        history.append((prompt, response))
        return history, history, image_oneup, temp_img_name, counter_out
    if prompt.lower() == 'restart' : #--to add revert functionality later
        history = history or []
        temp_img_name = img_name[:-4]+str(int(time.time()))+'.png' 
        image_in.save(temp_img_name)
        response = 'Reverted to the last image ' + '<img src="/file=' + temp_img_name + '">'  
        history.append((prompt, response))
        return history, history, image_in, temp_img_name, counter_out
    if counter_out > 0:
      edited_image = pipe(prompt, image=image_hid, num_inference_steps=int(in_steps), guidance_scale=float(in_guidance_scale), image_guidance_scale=float(in_img_guidance_scale)).images[0]
      if os.path.exists(img_name):
        os.remove(img_name)
      temp_img_name = img_name[:-4]+str(int(time.time()))+'.png' 
      # Create a file-like object
      with open(temp_img_name, "wb") as fp:
        # Save the image to the file-like object
        edited_image.save(fp)
      #Get the name of the saved image
      saved_image_name = fp.name
      #edited_image.save(temp_img_name) #, overwrite=True)
      counter_out += 1
    else:
      seed = random.randint(0, 1000000)
      img_name = f"./edited_image_{seed}.png"
      #Resizing the image
      basewidth = 512
      wpercent = (basewidth/float(image_in.size[0]))
      hsize = int((float(image_in.size[1])*float(wpercent)))
      image_in = image_in.resize((basewidth,hsize), Image.Resampling.LANCZOS)
      edited_image = pipe(prompt, image=image_in, num_inference_steps=int(in_steps), guidance_scale=float(in_guidance_scale), image_guidance_scale=float(in_img_guidance_scale)).images[0]
      if os.path.exists(img_name):
        os.remove(img_name)
      with open(img_name, "wb") as fp:
        # Save the image to the file-like object
        edited_image.save(fp)
      #Get the name of the saved image
      saved_image_name2 = fp.name
    history = history or []
    #Resizing (or not) the image for better display and adding supportive sample text
    add_text_list = ["There you go", "Enjoy your image!", "Nice work! Wonder what you gonna do next!", "Way to go!", "Does this work for you?", "Something like this?"]
    if counter_out > 0:
        response = random.choice(add_text_list) + '<img src="/file=' + saved_image_name + '">'  
        history.append((prompt, response))
        return history, history, edited_image, temp_img_name, counter_out
    else:
        response = random.choice(add_text_list) + '<img src="/file=' + saved_image_name2 + '">'   #IMG_NAME
        history.append((prompt, response))
        counter_out += 1
        return history, history, edited_image, img_name, counter_out
        
        

with gr.Blocks() as demo:
    gr.Markdown("""<h1><center> Chat Interface with InstructPix2Pix: Give Image Editing Instructions</h1></center>
    <p>For faster inference without waiting in the queue, you may duplicate the space and upgrade to GPU in settings.<br/>
    <a href="https://huggingface.co/spaces/ysharma/InstructPix2Pix_Chatbot?duplicate=true">
    <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
    
    **Note: Please be advised that a safety checker has been implemented in this public space. 
    Any attempts to generate inappropriate or NSFW images will result in the display of a black screen 
    as a precautionary measure to protect all users. We appreciate your cooperation in 
    maintaining a safe and appropriate environment for all members of our community.**

    New features and bug-fixes: 
    
    1. Now use 'reverse' as prompt to get back the previous image after an unwanted edit
    2. Use 'restart' as prompt to get back to original image and start over!
    3. Now you can load larger images (~5 mb) as well
    
    <p/>""")
    with gr.Row():
      with gr.Column():
        image_in = gr.Image(type='pil', label="Original Image")
        text_in = gr.Textbox()
        state_in = gr.State()
        #with gr.Row():
        b1 = gr.Button('Edit the image!')
        #b2 = gr.Button('Revert!')
        with gr.Accordion("Advance settings for Training and Inference", open=False):
          gr.Markdown("Advance settings for - Number of Inference steps, Guidanace scale, and Image guidance scale.")
          in_steps = gr.Number(label="Enter the number of Inference steps", value = 20)
          in_guidance_scale = gr.Slider(1,10, step=0.5, label="Set Guidance scale", value=7.5)
          in_img_guidance_scale = gr.Slider(1,10, step=0.5, label="Set Image Guidance scale", value=1.5)
          image_hid = gr.Image(type='pil', visible=False)
          image_oneup = gr.Image(type='pil', visible=False)
          img_name_temp_out = gr.Textbox(visible=False)
          #img_revert = gr.Checkbox(visible=True, value=False,label=to track a revert message)
          counter_out = gr.Number(visible=False, value=0, precision=0)
      chatbot = gr.Chatbot() 
    b1.click(chat,[image_in, in_steps, in_guidance_scale, in_img_guidance_scale, image_hid, img_name_temp_out,counter_out, image_oneup,  text_in, state_in], [chatbot, state_in, image_hid, img_name_temp_out, counter_out]) #, queue=True)
    b1.click(previous, [image_hid], [image_oneup])
    #b2.click(previous, image_oneup, image_hid)
    gr.Markdown(help_text)
    
demo.queue(concurrency_count=10)
demo.launch(debug=True, width="80%", height=2000)