import gradio as gr import json import requests import os from text_generation import Client, InferenceAPIClient # Load pre-trained model and tokenizer - for THUDM model from transformers import AutoModel, AutoTokenizer tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() model_glm = model_glm.eval() # Load pre-trained model and tokenizer for Chinese to English translator from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") # Define function to generate model predictions and update the history def predict_glm(input, history=[]): response, history = model_glm.chat(tokenizer_glm, input, history) # translate Chinese to English history = [(query, translate_Chinese_English(response)) for query, response in history] return history, history #[history] + updates def translate_Chinese_English(chinese_text): # translate Chinese to English tokenizer_chtoen.src_lang = "zh" encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt") generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en")) trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True) return trans_eng_text[0] # Define generator to stream model predictions def predict_glm_stream_old(input, history=[]): #, top_p, temperature): top_p = 1.0 temperature = 1.0 for response, history in model_glm.stream_chat(tokenizer_glm, input, history, top_p=1.0, temperature=1.0): #max_length=max_length, print(f"In for loop resonse is ^^- {response}") print(f"In for loop history is ^^- {history}") # translate Chinese to English history = [(query, translate_Chinese_English(response)) for query, response in history] print(f"In for loop translated history is ^^- {history}") yield history, history #[history] + updates # Define function to generate model predictions and update the history def predict_glm_stream(input, history=[]): #, top_p, temperature): for response, updates in model_glm.stream_chat(tokenizer_glm, input, history[-1] if history else history, top_p=1.0, temperature=1.0): #history print(f"In for loop resonse is ^^- {response}") print(f"In for loop updates is ^^- {updates}") # translate Chinese to English #history = [(query, translate_Chinese_English(response)) for query, response in history] print(f"In for loop OG history is ^^- {history}") print(f"In for loop translated history is ^^- {history+updates}") yield history+updates """ def predict(input, max_length, top_p, temperature, history=None): if history is None: history = [] for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature): updates = [] for query, response in history: updates.append(gr.update(visible=True, value="user:" + query)) #用户 updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) if len(updates) < MAX_BOXES: updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) yield [history] + updates """ def reset_textbox(): return gr.update(value="") def reset_chat(chatbot, state): # debug #print(f"^^chatbot value is - {chatbot}") #print(f"^^state value is - {state}") return None, [] #title = """