import gradio as gr import json import requests import os from text_generation import Client, InferenceAPIClient # Load pre-trained model and tokenizer - for THUDM model from transformers import AutoModel, AutoTokenizer tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() model_glm = model_glm.eval() # Load pre-trained model and tokenizer for Chinese to English translator from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") # Define function to generate model predictions and update the history def predict_glm(input, history=[]): response, history = model_glm.chat(tokenizer_glm, input, history) # translate Chinese to English history = [(query, translate_Chinese_English(response)) for query, response in history] return history, history #[history] + updates def translate_Chinese_English(chinese_text): # translate Chinese to English tokenizer_chtoen.src_lang = "zh" encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt") generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en")) trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True) return trans_eng_text[0] # Define generator to stream model predictions def predict_glm_stream_old(input, history=[]): #, top_p, temperature): top_p = 1.0 temperature = 1.0 for response, history in model_glm.stream_chat(tokenizer_glm, input, history, top_p=1.0, temperature=1.0): #max_length=max_length, print(f"In for loop resonse is ^^- {response}") print(f"In for loop history is ^^- {history}") # translate Chinese to English history = [(query, translate_Chinese_English(response)) for query, response in history] print(f"In for loop translated history is ^^- {history}") yield history, history #[history] + updates # Define function to generate model predictions and update the history def predict_glm_stream(input, history=[]): #, top_p, temperature): for response, updates in model_glm.stream_chat(tokenizer_glm, input, history[-1] if history else history, top_p=1.0, temperature=1.0): #history print(f"In for loop resonse is ^^- {response}") print(f"In for loop updates is ^^- {updates}") # translate Chinese to English #history = [(query, translate_Chinese_English(response)) for query, response in history] print(f"In for loop OG history is ^^- {history}") print(f"In for loop translated history is ^^- {history+updates}") yield history+updates """ def predict(input, max_length, top_p, temperature, history=None): if history is None: history = [] for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, temperature=temperature): updates = [] for query, response in history: updates.append(gr.update(visible=True, value="user:" + query)) #用户 updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) if len(updates) < MAX_BOXES: updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) yield [history] + updates """ def reset_textbox(): return gr.update(value="") def reset_chat(chatbot, state): # debug #print(f"^^chatbot value is - {chatbot}") #print(f"^^state value is - {state}") return None, [] #title = """

🔥🔥Comparison: ChatGPT & OpenChatKit


🚀A Gradio Streaming Demo


Official Demo: OpenChatKit feedback app""" title = """

🔥🔥Comparison: ChatGPT & Open Sourced CHatGLM-6B


🚀A Gradio Chatbot Demo

""" description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: ``` User: Assistant: User: Assistant: ... ``` In this app, you can explore the outputs of multiple LLMs when prompted in similar ways. """ with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;} #chatglm {height: 520px; overflow: auto;} """ ) as demo: gr.HTML(title) #with gr.Row(): with gr.Column(): #(scale=10): with gr.Box(): with gr.Row(): with gr.Column(scale=8): inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " ) with gr.Column(scale=1): b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True) with gr.Column(scale=1): b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True) state_glm = gr.State([]) with gr.Box(): chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B') #with gr.Column(): #(scale=2, elem_id='parameters'): with gr.Box(): gr.HTML("Parameters for ChatGLM-6B", visible=True) top_p = gr.Slider(minimum=-0, maximum=1.0,value=0.25, step=0.05,interactive=True, label="Top-p", visible=False) temperature = gr.Slider(minimum=-0, maximum=5.0, value=0.6, step=0.1, interactive=True, label="Temperature", visible=False) #top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", visible=False) #repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.01, step=0.01, interactive=True, label="Repetition Penalty", visible=False) inputs.submit(reset_textbox, [], [inputs]) inputs.submit( predict_glm_stream, [inputs, chatbot_glm, ], #[inputs, state_glm, ], [chatbot_glm],) #[chatbot_glm, state_glm],) b1.click( predict_glm_stream, [inputs, chatbot_glm, ], #[inputs, state_glm, ], [chatbot_glm],) #[chatbot_glm, state_glm],) #b2.click(reset_chat, [chatbot_chatgpt, state_chatgpt], [chatbot_chatgpt, state_chatgpt]) b2.click(reset_chat, [chatbot_glm, state_glm], [chatbot_glm, state_glm]) gr.HTML('''
Duplicate SpaceDuplicate the Space and run securely with your OpenAI API Key
''') gr.Markdown(description) demo.queue(concurrency_count=16).launch(height= 800, debug=True)