Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import requests | |
import os | |
from text_generation import Client, InferenceAPIClient | |
# Load pre-trained model and tokenizer - for THUDM model | |
from transformers import AutoModel, AutoTokenizer | |
tokenizer_glm = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True) | |
model_glm = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda() | |
model_glm = model_glm.eval() | |
# Load pre-trained model and tokenizer for Chinese to English translator | |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer | |
model_chtoen = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") | |
tokenizer_chtoen = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") | |
# Define function to generate model predictions and update the history | |
def predict_glm(input, history=[]): | |
response, history = model_glm.chat(tokenizer_glm, input, history) | |
# translate Chinese to English | |
history = [(query, translate_Chinese_English(response)) for query, response in history] | |
return history, history #[history] + updates | |
def translate_Chinese_English(chinese_text): | |
# translate Chinese to English | |
tokenizer_chtoen.src_lang = "zh" | |
encoded_zh = tokenizer_chtoen(chinese_text, return_tensors="pt") | |
generated_tokens = model_chtoen.generate(**encoded_zh, forced_bos_token_id=tokenizer_chtoen.get_lang_id("en")) | |
trans_eng_text = tokenizer_chtoen.batch_decode(generated_tokens, skip_special_tokens=True) | |
return trans_eng_text[0] | |
# Define generator to stream model predictions | |
def predict_glm_stream_old(input, history=[]): #, top_p, temperature): | |
top_p = 1.0 | |
temperature = 1.0 | |
for response, history in model_glm.stream_chat(tokenizer_glm, input, history, top_p=1.0, temperature=1.0): #max_length=max_length, | |
print(f"In for loop resonse is ^^- {response}") | |
print(f"In for loop history is ^^- {history}") | |
# translate Chinese to English | |
history = [(query, translate_Chinese_English(response)) for query, response in history] | |
print(f"In for loop translated history is ^^- {history}") | |
yield history, history #[history] + updates | |
# Define function to generate model predictions and update the history | |
def predict_glm_stream(input, history=[]): #, top_p, temperature): | |
for response, updates in model_glm.stream_chat(tokenizer_glm, input, history[-1] if history else history, top_p=1.0, temperature=1.0): #history | |
print(f"In for loop resonse is ^^- {response}") | |
print(f"In for loop updates is ^^- {updates}") | |
# translate Chinese to English | |
#history = [(query, translate_Chinese_English(response)) for query, response in history] | |
print(f"In for loop OG history is ^^- {history}") | |
print(f"In for loop translated history is ^^- {history+updates}") | |
yield history+updates | |
""" | |
def predict(input, max_length, top_p, temperature, history=None): | |
if history is None: | |
history = [] | |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
updates = [] | |
for query, response in history: | |
updates.append(gr.update(visible=True, value="user:" + query)) #用户 | |
updates.append(gr.update(visible=True, value="ChatGLM-6B:" + response)) | |
if len(updates) < MAX_BOXES: | |
updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) | |
yield [history] + updates | |
""" | |
def reset_textbox(): | |
return gr.update(value="") | |
def reset_chat(chatbot, state): | |
# debug | |
#print(f"^^chatbot value is - {chatbot}") | |
#print(f"^^state value is - {state}") | |
return None, [] | |
#title = """<h1 align="center">🔥🔥Comparison: ChatGPT & OpenChatKit </h1><br><h3 align="center">🚀A Gradio Streaming Demo</h3><br>Official Demo: <a href="https://huggingface.co/spaces/togethercomputer/OpenChatKit">OpenChatKit feedback app</a>""" | |
title = """<h1 align="center">🔥🔥Comparison: ChatGPT & Open Sourced CHatGLM-6B </h1><br><h3 align="center">🚀A Gradio Chatbot Demo</h3>""" | |
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form: | |
``` | |
User: <utterance> | |
Assistant: <utterance> | |
User: <utterance> | |
Assistant: <utterance> | |
... | |
``` | |
In this app, you can explore the outputs of multiple LLMs when prompted in similar ways. | |
""" | |
with gr.Blocks(css="""#col_container {margin-left: auto; margin-right: auto;} | |
#chatglm {height: 520px; overflow: auto;} """ ) as demo: | |
gr.HTML(title) | |
#with gr.Row(): | |
with gr.Column(): #(scale=10): | |
with gr.Box(): | |
with gr.Row(): | |
with gr.Column(scale=8): | |
inputs = gr.Textbox(placeholder="Hi there!", label="Type an input and press Enter ⤵️ " ) | |
with gr.Column(scale=1): | |
b1 = gr.Button('🏃Run', elem_id = 'run').style(full_width=True) | |
with gr.Column(scale=1): | |
b2 = gr.Button('🔄Clear up Chatbots!', elem_id = 'clear').style(full_width=True) | |
state_glm = gr.State([]) | |
with gr.Box(): | |
chatbot_glm = gr.Chatbot(elem_id="chatglm", label='THUDM-ChatGLM6B') | |
#with gr.Column(): #(scale=2, elem_id='parameters'): | |
with gr.Box(): | |
gr.HTML("Parameters for ChatGLM-6B", visible=True) | |
top_p = gr.Slider(minimum=-0, maximum=1.0,value=0.25, step=0.05,interactive=True, label="Top-p", visible=False) | |
temperature = gr.Slider(minimum=-0, maximum=5.0, value=0.6, step=0.1, interactive=True, label="Temperature", visible=False) | |
#top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", visible=False) | |
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.01, step=0.01, interactive=True, label="Repetition Penalty", visible=False) | |
inputs.submit(reset_textbox, [], [inputs]) | |
inputs.submit( predict_glm_stream, | |
[inputs, chatbot_glm, ], #[inputs, state_glm, ], | |
[chatbot_glm],) #[chatbot_glm, state_glm],) | |
b1.click( predict_glm_stream, | |
[inputs, chatbot_glm, ], #[inputs, state_glm, ], | |
[chatbot_glm],) #[chatbot_glm, state_glm],) | |
#b2.click(reset_chat, [chatbot_chatgpt, state_chatgpt], [chatbot_chatgpt, state_chatgpt]) | |
b2.click(reset_chat, [chatbot_glm, state_glm], [chatbot_glm, state_glm]) | |
gr.HTML('''<center><a href="https://huggingface.co/spaces/ysharma/OpenChatKit_ChatGPT_Comparison?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your OpenAI API Key</center>''') | |
gr.Markdown(description) | |
demo.queue(concurrency_count=16).launch(height= 800, debug=True) |