Update tasks/text.py
Browse files- tasks/text.py +6 -6
tasks/text.py
CHANGED
@@ -37,7 +37,7 @@ class ConspiracyClassification768(
|
|
37 |
PyTorchModelHubMixin,
|
38 |
# optionally, you can add metadata which gets pushed to the model card
|
39 |
):
|
40 |
-
def __init__(self, num_classes):
|
41 |
super().__init__()
|
42 |
self.h1 = nn.Linear(768, 100)
|
43 |
self.h2 = nn.Linear(100, 100)
|
@@ -70,7 +70,7 @@ class CTBERT(
|
|
70 |
PyTorchModelHubMixin,
|
71 |
# optionally, you can add metadata which gets pushed to the model card
|
72 |
):
|
73 |
-
def __init__(self, num_classes):
|
74 |
super().__init__()
|
75 |
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
76 |
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
@@ -86,7 +86,7 @@ class conspiracyModelBase(
|
|
86 |
PyTorchModelHubMixin,
|
87 |
# optionally, you can add metadata which gets pushed to the model card
|
88 |
):
|
89 |
-
def __init__(self, num_classes):
|
90 |
super().__init__()
|
91 |
self.n_classes = num_classes
|
92 |
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-base', num_labels=num_classes)
|
@@ -101,7 +101,7 @@ class conspiracyModelLarge(
|
|
101 |
PyTorchModelHubMixin,
|
102 |
# optionally, you can add metadata which gets pushed to the model card
|
103 |
):
|
104 |
-
def __init__(self, num_classes):
|
105 |
super().__init__()
|
106 |
self.n_classes = num_classes
|
107 |
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-large', num_labels=num_classes)
|
@@ -116,7 +116,7 @@ class gteModelLarge(
|
|
116 |
PyTorchModelHubMixin,
|
117 |
# optionally, you can add metadata which gets pushed to the model card
|
118 |
):
|
119 |
-
def __init__(self, num_classes):
|
120 |
super().__init__()
|
121 |
self.n_classes = num_classes
|
122 |
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
|
@@ -133,7 +133,7 @@ class gteModel(
|
|
133 |
PyTorchModelHubMixin,
|
134 |
# optionally, you can add metadata which gets pushed to the model card
|
135 |
):
|
136 |
-
def __init__(self, num_classes):
|
137 |
super().__init__()
|
138 |
self.n_classes = num_classes
|
139 |
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
|
|
|
37 |
PyTorchModelHubMixin,
|
38 |
# optionally, you can add metadata which gets pushed to the model card
|
39 |
):
|
40 |
+
def __init__(self, num_classes=8):
|
41 |
super().__init__()
|
42 |
self.h1 = nn.Linear(768, 100)
|
43 |
self.h2 = nn.Linear(100, 100)
|
|
|
70 |
PyTorchModelHubMixin,
|
71 |
# optionally, you can add metadata which gets pushed to the model card
|
72 |
):
|
73 |
+
def __init__(self, num_classes=8):
|
74 |
super().__init__()
|
75 |
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2')
|
76 |
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes)
|
|
|
86 |
PyTorchModelHubMixin,
|
87 |
# optionally, you can add metadata which gets pushed to the model card
|
88 |
):
|
89 |
+
def __init__(self, num_classes=8):
|
90 |
super().__init__()
|
91 |
self.n_classes = num_classes
|
92 |
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-base', num_labels=num_classes)
|
|
|
101 |
PyTorchModelHubMixin,
|
102 |
# optionally, you can add metadata which gets pushed to the model card
|
103 |
):
|
104 |
+
def __init__(self, num_classes=8):
|
105 |
super().__init__()
|
106 |
self.n_classes = num_classes
|
107 |
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-large', num_labels=num_classes)
|
|
|
116 |
PyTorchModelHubMixin,
|
117 |
# optionally, you can add metadata which gets pushed to the model card
|
118 |
):
|
119 |
+
def __init__(self, num_classes=8):
|
120 |
super().__init__()
|
121 |
self.n_classes = num_classes
|
122 |
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True)
|
|
|
133 |
PyTorchModelHubMixin,
|
134 |
# optionally, you can add metadata which gets pushed to the model card
|
135 |
):
|
136 |
+
def __init__(self, num_classes=8):
|
137 |
super().__init__()
|
138 |
self.n_classes = num_classes
|
139 |
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True)
|