|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import random |
|
import numpy as np |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from tqdm import tqdm, trange |
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler |
|
from transformers import BertForPreTraining, BertModel, AutoTokenizer, AutoModel, ModernBertForSequenceClassification, BertForSequenceClassification, RobertaForSequenceClassification |
|
|
|
|
|
from .utils.evaluation import TextEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "Submission 1: FT-Modern-BERT-Large" |
|
ROUTE = "/text" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
|
|
MODEL = "modern-large" |
|
|
|
class ConspiracyClassification768( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.h1 = nn.Linear(768, 100) |
|
self.h2 = nn.Linear(100, 100) |
|
self.h3 = nn.Linear(100, 100) |
|
self.h4 = nn.Linear(100, 50) |
|
self.h5 = nn.Linear(50, num_classes) |
|
self.dropout = nn.Dropout(0.2) |
|
self.activation = nn.ReLU() |
|
|
|
|
|
def forward(self, input_texts): |
|
outputs = self.h1(input_texts) |
|
outputs = self.activation(outputs) |
|
outputs = self.dropout(outputs) |
|
outputs = self.h2(outputs) |
|
outputs = self.activation(outputs) |
|
outputs = self.dropout(outputs) |
|
outputs = self.h3(outputs) |
|
outputs = self.activation(outputs) |
|
outputs = self.dropout(outputs) |
|
outputs = self.h4(outputs) |
|
outputs = self.activation(outputs) |
|
outputs = self.dropout(outputs) |
|
outputs = self.h5(outputs) |
|
|
|
return outputs |
|
|
|
class CTBERT( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2') |
|
self.bert.cls.seq_relationship = nn.Linear(1024, num_classes) |
|
|
|
def forward(self, input_ids, input_mask, token_type_ids): |
|
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask) |
|
logits = outputs[1] |
|
|
|
return logits |
|
|
|
class conspiracyModelBase( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.n_classes = num_classes |
|
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-base', num_labels=num_classes) |
|
|
|
def forward(self, input_ids, input_mask): |
|
outputs = self.bert(input_ids = input_ids, attention_mask = input_mask) |
|
|
|
return outputs.logits |
|
|
|
class conspiracyModelLarge( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.n_classes = num_classes |
|
self.bert = ModernBertForSequenceClassification.from_pretrained('answerdotai/ModernBERT-large', num_labels=num_classes) |
|
|
|
def forward(self, input_ids, input_mask): |
|
outputs = self.bert(input_ids = input_ids, attention_mask = input_mask) |
|
|
|
return outputs.logits |
|
|
|
class gteModelLarge( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.n_classes = num_classes |
|
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-large-en-v1.5', trust_remote_code=True) |
|
self.cls = nn.Linear(1024, num_classes) |
|
|
|
def forward(self, input_ids, input_mask, input_type_ids): |
|
outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids) |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
logits = self.cls(embeddings) |
|
return logits |
|
|
|
class gteModel( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
|
|
): |
|
def __init__(self, num_classes=8): |
|
super().__init__() |
|
self.n_classes = num_classes |
|
self.gte = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) |
|
self.cls = nn.Linear(768, num_classes) |
|
|
|
def forward(self, input_ids, input_mask, input_type_ids): |
|
outputs = self.gte(input_ids = input_ids, attention_mask = input_mask, token_type_ids = input_type_ids) |
|
embeddings = outputs.last_hidden_state[:, 0] |
|
logits = self.cls(embeddings) |
|
return logits |
|
|
|
@router.post(ROUTE, tags=["Text Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_text(request: TextEvaluationRequest): |
|
""" |
|
Evaluate text classification for climate disinformation detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-7) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"0_not_relevant": 0, |
|
"1_not_happening": 1, |
|
"2_not_human": 2, |
|
"3_not_bad": 3, |
|
"4_solutions_harmful_unnecessary": 4, |
|
"5_science_unreliable": 5, |
|
"6_proponents_biased": 6, |
|
"7_fossil_fuels_needed": 7 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name) |
|
|
|
|
|
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) |
|
|
|
|
|
train_test = dataset["train"] |
|
test_dataset = dataset["test"] |
|
|
|
if MODEL =="mlp": |
|
model = ConspiracyClassification768.from_pretrained("ypesk/frugal-ai-EURECOM-mlp-768-fullset") |
|
model = model.to(device) |
|
emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large") |
|
batch_size = 6 |
|
|
|
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset])) |
|
test_data = TensorDataset(test_texts) |
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
elif MODEL == "sk": |
|
emb_model = SentenceTransformer("sentence-transformers/sentence-t5-large") |
|
batch_size = 512 |
|
|
|
test_texts = torch.Tensor(emb_model.encode([t['quote'] for t in test_dataset])) |
|
test_data = TensorDataset(test_texts) |
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
model = pickle.load(open('../svm.pkl', "rb")) |
|
|
|
|
|
elif MODEL == "ct": |
|
model = CTBERT.from_pretrained("ypesk/frugal-ai-EURECOM-ct-bert-baseline") |
|
model = model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert-fullset') |
|
|
|
test_texts = [t['quote'] for t in test_dataset] |
|
|
|
MAX_LEN = 256 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask'] |
|
test_token_type_ids = torch.tensor(test_token_type_ids) |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
|
|
batch_size = 12 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
elif MODEL == "modern-base": |
|
model = conspiracyModelBase.from_pretrained("ypesk/frugal-ai-EURECOM-modern-base-fullset") |
|
model = model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base") |
|
|
|
test_texts = [t['quote'] for t in test_dataset] |
|
|
|
MAX_LEN = 256 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask'] |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
|
|
batch_size = 12 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
elif MODEL == "modern-large": |
|
model = conspiracyModelLarge.from_pretrained('ypesk/frugal-ai-EURECOM-modern-large-fullset') |
|
model = model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-large") |
|
|
|
test_texts = [t['quote'] for t in test_dataset] |
|
|
|
MAX_LEN = 256 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['attention_mask'] |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
|
|
batch_size = 12 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
elif MODEL == "gte-base": |
|
model = gteModel.from_pretrained("ypesk/frugal-ai-EURECOM-gte-base-fullset") |
|
model = model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5') |
|
|
|
test_texts = [t['quote'] for t in test_dataset] |
|
|
|
MAX_LEN = 256 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids'] |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
test_token_type_ids = torch.tensor(test_token_type_ids) |
|
|
|
batch_size = 12 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
elif MODEL == "gte-large": |
|
model = gteModelLarge.from_pretrained("ypesk/frugal-ai-EURECOM-gte-large-fullset") |
|
model = model.to(device) |
|
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-large-en-v1.5') |
|
|
|
test_texts = [t['quote'] for t in test_dataset] |
|
|
|
MAX_LEN = 256 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_attention_mask, test_token_type_ids = tokenized_test['input_ids'], tokenized_test['attention_mask'], tokenized_test['token_type_ids'] |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
test_token_type_ids = torch.tensor(test_token_type_ids) |
|
|
|
batch_size = 12 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
|
|
|
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
|
|
predictions = [] |
|
model.eval() |
|
for batch in tqdm(test_dataloader): |
|
batch = tuple(t.to(device) for t in batch) |
|
with torch.no_grad(): |
|
if MODEL =="mlp": |
|
b_texts = batch[0] |
|
logits = model(b_texts) |
|
elif MODEL == "modern-base" or MODEL=="modern-large": |
|
b_input_ids, b_input_mask = batch |
|
logits = model(b_input_ids, b_input_mask) |
|
elif MODEL == "gte-base" or MODEL=="gte-large" or MODEL=="ct": |
|
b_input_ids, b_input_mask, b_token_type_ids = batch |
|
logits = model(b_input_ids, b_input_mask, b_token_type_ids) |
|
|
|
logits = logits.detach().cpu().numpy() |
|
predictions.extend(logits.argmax(1)) |
|
|
|
true_labels = test_dataset["label"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |