|
from fastapi import APIRouter |
|
from datetime import datetime |
|
from datasets import load_dataset |
|
from sklearn.metrics import accuracy_score |
|
import random |
|
|
|
from .utils.evaluation import TextEvaluationRequest |
|
from .utils.emissions import tracker, clean_emissions_data, get_space_info |
|
|
|
router = APIRouter() |
|
|
|
DESCRIPTION = "First Baseline" |
|
ROUTE = "/text" |
|
|
|
@router.post(ROUTE, tags=["Text Task"], |
|
description=DESCRIPTION) |
|
async def evaluate_text(request: TextEvaluationRequest): |
|
""" |
|
Evaluate text classification for climate disinformation detection. |
|
|
|
Current Model: Random Baseline |
|
- Makes random predictions from the label space (0-7) |
|
- Used as a baseline for comparison |
|
""" |
|
|
|
username, space_url = get_space_info() |
|
|
|
|
|
LABEL_MAPPING = { |
|
"0_not_relevant": 0, |
|
"1_not_happening": 1, |
|
"2_not_human": 2, |
|
"3_not_bad": 3, |
|
"4_solutions_harmful_unnecessary": 4, |
|
"5_science_unreliable": 5, |
|
"6_proponents_biased": 6, |
|
"7_fossil_fuels_needed": 7 |
|
} |
|
|
|
|
|
dataset = load_dataset(request.dataset_name) |
|
|
|
|
|
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) |
|
|
|
|
|
train_test = dataset["train"] |
|
test_dataset = dataset["test"] |
|
|
|
|
|
tracker.start() |
|
tracker.start_task("inference") |
|
|
|
|
|
|
|
|
|
|
|
class CovidTwitterBertClassifier(nn.Module): |
|
|
|
def __init__(self, n_classes): |
|
super().__init__() |
|
self.n_classes = n_classes |
|
self.bert = BertForPreTraining.from_pretrained('digitalepidemiologylab/covid-twitter-bert-v2') |
|
self.bert.cls.seq_relationship = nn.Linear(1024, n_classes) |
|
|
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, input_ids, token_type_ids, input_mask): |
|
outputs = self.bert(input_ids = input_ids, token_type_ids = token_type_ids, attention_mask = input_mask) |
|
|
|
logits = outputs[1] |
|
|
|
return logits |
|
|
|
model = CovidTwitterBertClassifier(8) |
|
|
|
model.to(device) |
|
model.load_state_dict(torch.load('model.pth')) |
|
model.eval() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('digitalepidemiologylab/covid-twitter-bert') |
|
|
|
test_texts = [t['quote'] for t in data_test] |
|
|
|
MAX_LEN = 128 |
|
|
|
tokenized_test = tokenizer(test_texts, max_length=MAX_LEN, padding='max_length', truncation=True) |
|
test_input_ids, test_token_type_ids, test_attention_mask = tokenized_test['input_ids'], tokenized_test['token_type_ids'], tokenized_test['attention_mask'] |
|
test_token_type_ids = torch.tensor(test_token_type_ids) |
|
|
|
test_input_ids = torch.tensor(test_input_ids) |
|
test_attention_mask = torch.tensor(test_attention_mask) |
|
|
|
batch_size = 8 |
|
test_data = TensorDataset(test_input_ids, test_attention_mask, test_token_type_ids) |
|
|
|
test_sampler = SequentialSampler(test_data) |
|
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=batch_size) |
|
|
|
predictions = [] |
|
for step, batch in enumerate(test_dataloader): |
|
|
|
|
|
batch = tuple(t.to(device) for t in batch) |
|
|
|
b_input_ids, b_input_mask, b_token_type_ids = batch |
|
with torch.no_grad(): |
|
logits = model(b_input_ids, b_token_type_ids, b_input_mask) |
|
|
|
logits = logits.detach().cpu().numpy() |
|
predictions.extend(logits.argmax(1)) |
|
for l in ground_truth: |
|
labels_sep.append(l) |
|
|
|
|
|
true_labels = test_dataset["label"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
emissions_data = tracker.stop_task() |
|
|
|
|
|
accuracy = accuracy_score(true_labels, predictions) |
|
|
|
|
|
results = { |
|
"username": username, |
|
"space_url": space_url, |
|
"submission_timestamp": datetime.now().isoformat(), |
|
"model_description": DESCRIPTION, |
|
"accuracy": float(accuracy), |
|
"energy_consumed_wh": emissions_data.energy_consumed * 1000, |
|
"emissions_gco2eq": emissions_data.emissions * 1000, |
|
"emissions_data": clean_emissions_data(emissions_data), |
|
"api_route": ROUTE, |
|
"dataset_config": { |
|
"dataset_name": request.dataset_name, |
|
"test_size": request.test_size, |
|
"test_seed": request.test_seed |
|
} |
|
} |
|
|
|
return results |