Spaces:
Runtime error
Runtime error
attention interface
Browse files- README.md +1 -1
- app.py +3 -0
- requirements.txt +1 -0
- src/attention_interface.py +259 -0
- src/call_interface.py +1 -3
- src/play_interface.py +26 -14
- src/state.py +49 -0
- src/visualisation.py +72 -0
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
|
|
|
| 1 |
---
|
| 2 |
+
title: GPT-2 Stockfish Debug
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: red
|
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import wandb
|
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from src import (
|
|
|
|
| 10 |
call_interface,
|
| 11 |
play_interface,
|
| 12 |
constants,
|
|
@@ -16,10 +17,12 @@ from src import (
|
|
| 16 |
demo = gr.TabbedInterface(
|
| 17 |
[
|
| 18 |
play_interface.interface,
|
|
|
|
| 19 |
call_interface.interface,
|
| 20 |
],
|
| 21 |
[
|
| 22 |
"Play",
|
|
|
|
| 23 |
"Call",
|
| 24 |
],
|
| 25 |
title="GPT-2 Stockfish Debug",
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
from src import (
|
| 10 |
+
attention_interface,
|
| 11 |
call_interface,
|
| 12 |
play_interface,
|
| 13 |
constants,
|
|
|
|
| 17 |
demo = gr.TabbedInterface(
|
| 18 |
[
|
| 19 |
play_interface.interface,
|
| 20 |
+
attention_interface.interface,
|
| 21 |
call_interface.interface,
|
| 22 |
],
|
| 23 |
[
|
| 24 |
"Play",
|
| 25 |
+
"Attention Viz",
|
| 26 |
"Call",
|
| 27 |
],
|
| 28 |
title="GPT-2 Stockfish Debug",
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
python-chess
|
| 2 |
wandb
|
|
|
|
|
|
| 1 |
python-chess
|
| 2 |
wandb
|
| 3 |
+
nnsight
|
src/attention_interface.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Gradio interface for plotting attention.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import chess
|
| 6 |
+
import gradio as gr
|
| 7 |
+
import torch
|
| 8 |
+
import uuid
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
from . import constants, state, visualisation
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def compute_cache(
|
| 15 |
+
game_pgn,
|
| 16 |
+
attention_layer,
|
| 17 |
+
attention_head,
|
| 18 |
+
comp_index,
|
| 19 |
+
state_cache,
|
| 20 |
+
state_board_index,
|
| 21 |
+
):
|
| 22 |
+
board = chess.Board()
|
| 23 |
+
fen_list = [board.fen()]
|
| 24 |
+
for move in game_pgn.split():
|
| 25 |
+
if move.endswith("."):
|
| 26 |
+
continue
|
| 27 |
+
try:
|
| 28 |
+
board.push_san(move)
|
| 29 |
+
fen_list.append(board.fen())
|
| 30 |
+
except ValueError:
|
| 31 |
+
gr.Warning(f"Invalid move {move}, stopping before it.")
|
| 32 |
+
break
|
| 33 |
+
state_cache = [(fen, state.model_cache(fen)) for fen in fen_list]
|
| 34 |
+
return (
|
| 35 |
+
*make_plot(
|
| 36 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
| 37 |
+
),
|
| 38 |
+
state_cache,
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def make_plot(
|
| 43 |
+
attention_layer,
|
| 44 |
+
attention_head,
|
| 45 |
+
comp_index,
|
| 46 |
+
state_cache,
|
| 47 |
+
state_board_index,
|
| 48 |
+
):
|
| 49 |
+
if state_cache is None:
|
| 50 |
+
gr.Warning("Cache not computed!")
|
| 51 |
+
return None, None, None, None, None
|
| 52 |
+
|
| 53 |
+
fen, (out, cache) = state_cache[state_board_index]
|
| 54 |
+
attn_list = [a[0, attention_head - 1] for a in cache[attention_layer - 1]]
|
| 55 |
+
prompt_attn, *comp_attn = attn_list
|
| 56 |
+
comp_attn.insert(0, prompt_attn[-1:])
|
| 57 |
+
comp_attn = [a.squeeze(0) for a in comp_attn]
|
| 58 |
+
if len(comp_attn) != 5:
|
| 59 |
+
raise NotImplementedError("This is not implemented yet.")
|
| 60 |
+
|
| 61 |
+
config_total = meta_total = dump_total = 0
|
| 62 |
+
config_done = False
|
| 63 |
+
heatmap = torch.zeros(64)
|
| 64 |
+
h_index = 0
|
| 65 |
+
for i, t_o in enumerate(out[0]):
|
| 66 |
+
try:
|
| 67 |
+
t_attn = comp_attn[comp_index - 1][i]
|
| 68 |
+
if (i < 3) or (i > len(out[0]) - 10):
|
| 69 |
+
dump_total += t_attn
|
| 70 |
+
continue
|
| 71 |
+
t_str = state.model.tokenizer.decode(t_o)
|
| 72 |
+
if t_str.startswith(" ") and h_index > 0:
|
| 73 |
+
config_done = True
|
| 74 |
+
if not config_done:
|
| 75 |
+
if t_str == "/":
|
| 76 |
+
dump_total += t_attn
|
| 77 |
+
continue
|
| 78 |
+
t_str = re.sub(r"\d", lambda m: "0" * int(m.group(0)), t_str)
|
| 79 |
+
config_total += t_attn
|
| 80 |
+
t_str_len = len(t_str.strip())
|
| 81 |
+
pre_t_attn = t_attn / t_str_len
|
| 82 |
+
for j in range(t_str_len):
|
| 83 |
+
heatmap[h_index + j] = pre_t_attn
|
| 84 |
+
h_index += t_str_len
|
| 85 |
+
else:
|
| 86 |
+
meta_total += t_attn
|
| 87 |
+
except IndexError:
|
| 88 |
+
break
|
| 89 |
+
raw_attention = comp_attn[comp_index - 1]
|
| 90 |
+
highlited_tokens = [
|
| 91 |
+
(state.model.tokenizer.decode(out[0][i]), raw_attention[i])
|
| 92 |
+
for i in range(len(raw_attention))
|
| 93 |
+
]
|
| 94 |
+
uci_move = state.model.tokenizer.decode(out[0][-5:-1]).strip()
|
| 95 |
+
board = chess.Board(fen)
|
| 96 |
+
heatmap = heatmap.view(8, 8).flip(0).view(64)
|
| 97 |
+
move = chess.Move.from_uci(uci_move)
|
| 98 |
+
svg_board, fig = visualisation.render_heatmap(
|
| 99 |
+
board, heatmap, arrows=[(move.from_square, move.to_square)]
|
| 100 |
+
)
|
| 101 |
+
info = (
|
| 102 |
+
f"[Completion] Complete: '{state.model.tokenizer.decode(out[0][-5:])}'"
|
| 103 |
+
f" Chosen: '{state.model.tokenizer.decode(out[0][-5:][comp_index-1])}'"
|
| 104 |
+
f"\n[Distribution] Config: {config_total:.2f} Meta: {meta_total:.2f} Dump: {dump_total:.2f}"
|
| 105 |
+
)
|
| 106 |
+
id = str(uuid.uuid4())
|
| 107 |
+
with open(f"{constants.FIGURE_DIRECTORY}/board_{id}.svg", "w") as f:
|
| 108 |
+
f.write(svg_board)
|
| 109 |
+
return (
|
| 110 |
+
board.fen(),
|
| 111 |
+
info,
|
| 112 |
+
fig,
|
| 113 |
+
f"{constants.FIGURE_DIRECTORY}/board_{id}.svg",
|
| 114 |
+
highlited_tokens,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def previous_board(
|
| 119 |
+
attention_layer,
|
| 120 |
+
attention_head,
|
| 121 |
+
comp_index,
|
| 122 |
+
state_cache,
|
| 123 |
+
state_board_index,
|
| 124 |
+
):
|
| 125 |
+
state_board_index -= 1
|
| 126 |
+
if state_board_index < 0:
|
| 127 |
+
gr.Warning("Already at first board.")
|
| 128 |
+
state_board_index = 0
|
| 129 |
+
return (
|
| 130 |
+
*make_plot(
|
| 131 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
| 132 |
+
),
|
| 133 |
+
state_board_index,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def next_board(
|
| 138 |
+
attention_layer,
|
| 139 |
+
attention_head,
|
| 140 |
+
comp_index,
|
| 141 |
+
state_cache,
|
| 142 |
+
state_board_index,
|
| 143 |
+
):
|
| 144 |
+
state_board_index += 1
|
| 145 |
+
if state_board_index >= len(state_cache):
|
| 146 |
+
gr.Warning("Already at last board.")
|
| 147 |
+
state_board_index = len(state_cache) - 1
|
| 148 |
+
return (
|
| 149 |
+
*make_plot(
|
| 150 |
+
attention_layer, attention_head, comp_index, state_cache, state_board_index
|
| 151 |
+
),
|
| 152 |
+
state_board_index,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
with gr.Blocks() as interface:
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Column():
|
| 159 |
+
game_pgn = gr.Textbox(
|
| 160 |
+
label="Game PGN",
|
| 161 |
+
lines=1,
|
| 162 |
+
)
|
| 163 |
+
compute_cache_button = gr.Button("Compute cache")
|
| 164 |
+
with gr.Group():
|
| 165 |
+
with gr.Row():
|
| 166 |
+
attention_layer = gr.Slider(
|
| 167 |
+
label="Attention layer",
|
| 168 |
+
minimum=1,
|
| 169 |
+
maximum=12,
|
| 170 |
+
step=1,
|
| 171 |
+
value=1,
|
| 172 |
+
)
|
| 173 |
+
attention_head = gr.Slider(
|
| 174 |
+
label="Attention head",
|
| 175 |
+
minimum=1,
|
| 176 |
+
maximum=12,
|
| 177 |
+
step=1,
|
| 178 |
+
value=1,
|
| 179 |
+
)
|
| 180 |
+
comp_index = gr.Slider(
|
| 181 |
+
label="Completion index",
|
| 182 |
+
minimum=1,
|
| 183 |
+
maximum=6,
|
| 184 |
+
step=1,
|
| 185 |
+
value=1,
|
| 186 |
+
)
|
| 187 |
+
with gr.Row():
|
| 188 |
+
previous_board_button = gr.Button("Previous board")
|
| 189 |
+
next_board_button = gr.Button("Next board")
|
| 190 |
+
current_board_fen = gr.Textbox(
|
| 191 |
+
label="Board FEN",
|
| 192 |
+
lines=1,
|
| 193 |
+
max_lines=1,
|
| 194 |
+
)
|
| 195 |
+
info = gr.Textbox(
|
| 196 |
+
label="Info",
|
| 197 |
+
lines=1,
|
| 198 |
+
info=(
|
| 199 |
+
"'Config' refers to the board configuration tokens."
|
| 200 |
+
"\n'Meta' to the additional board tokens (like color or castling)."
|
| 201 |
+
"\n'Dump' to the rest of the tokens (including '/')."
|
| 202 |
+
),
|
| 203 |
+
)
|
| 204 |
+
gr.Markdown(
|
| 205 |
+
"Note that only the 'Config' attention is plotted.\n\nSee below for the raw attention."
|
| 206 |
+
)
|
| 207 |
+
raw_attention_html = gr.HighlightedText(
|
| 208 |
+
label="Raw attention",
|
| 209 |
+
)
|
| 210 |
+
with gr.Column():
|
| 211 |
+
image_board = gr.Image(label="Board")
|
| 212 |
+
colorbar = gr.Plot(label="Colorbar")
|
| 213 |
+
|
| 214 |
+
static_inputs = [
|
| 215 |
+
attention_layer,
|
| 216 |
+
attention_head,
|
| 217 |
+
comp_index,
|
| 218 |
+
]
|
| 219 |
+
static_outputs = [
|
| 220 |
+
current_board_fen,
|
| 221 |
+
info,
|
| 222 |
+
colorbar,
|
| 223 |
+
image_board,
|
| 224 |
+
raw_attention_html,
|
| 225 |
+
]
|
| 226 |
+
|
| 227 |
+
state_cache = gr.State(value=None)
|
| 228 |
+
state_board_index = gr.State(value=0)
|
| 229 |
+
compute_cache_button.click(
|
| 230 |
+
compute_cache,
|
| 231 |
+
inputs=[game_pgn, *static_inputs, state_cache, state_board_index],
|
| 232 |
+
outputs=[*static_outputs, state_cache],
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
previous_board_button.click(
|
| 236 |
+
previous_board,
|
| 237 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
| 238 |
+
outputs=[*static_outputs, state_board_index],
|
| 239 |
+
)
|
| 240 |
+
next_board_button.click(
|
| 241 |
+
next_board,
|
| 242 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
| 243 |
+
outputs=[*static_outputs, state_board_index],
|
| 244 |
+
)
|
| 245 |
+
attention_layer.change(
|
| 246 |
+
make_plot,
|
| 247 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
| 248 |
+
outputs=[*static_outputs],
|
| 249 |
+
)
|
| 250 |
+
attention_head.change(
|
| 251 |
+
make_plot,
|
| 252 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
| 253 |
+
outputs=[*static_outputs],
|
| 254 |
+
)
|
| 255 |
+
comp_index.change(
|
| 256 |
+
make_plot,
|
| 257 |
+
inputs=[*static_inputs, state_cache, state_board_index],
|
| 258 |
+
outputs=[*static_outputs],
|
| 259 |
+
)
|
src/call_interface.py
CHANGED
|
@@ -9,9 +9,7 @@ import gradio as gr
|
|
| 9 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
| 10 |
|
| 11 |
headers = {"X-Wait-For-Model": "true"}
|
| 12 |
-
client = huggingface_hub.InferenceClient(
|
| 13 |
-
model=model_name, headers=headers
|
| 14 |
-
)
|
| 15 |
|
| 16 |
inputs = gr.Textbox(label="Prompt")
|
| 17 |
outputs = gr.Textbox(label="Completion")
|
|
|
|
| 9 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
| 10 |
|
| 11 |
headers = {"X-Wait-For-Model": "true"}
|
| 12 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers)
|
|
|
|
|
|
|
| 13 |
|
| 14 |
inputs = gr.Textbox(label="Prompt")
|
| 15 |
outputs = gr.Textbox(label="Completion")
|
src/play_interface.py
CHANGED
|
@@ -15,17 +15,20 @@ import gradio as gr
|
|
| 15 |
from . import constants
|
| 16 |
|
| 17 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
| 18 |
-
headers = {
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
| 22 |
inference_fn = client.text_generation
|
| 23 |
|
| 24 |
|
| 25 |
def plot_board(
|
| 26 |
board: chess.Board,
|
| 27 |
-
orientation: bool =
|
| 28 |
):
|
|
|
|
|
|
|
| 29 |
try:
|
| 30 |
last_move = board.peek()
|
| 31 |
arrows = [(last_move.from_square, last_move.to_square)]
|
|
@@ -47,17 +50,17 @@ def plot_board(
|
|
| 47 |
f.write(svg_board)
|
| 48 |
return f"{constants.FIGURE_DIRECTORY}/board_{id}.svg"
|
| 49 |
|
|
|
|
| 50 |
def render_board(
|
| 51 |
current_board: chess.Board,
|
| 52 |
-
orientation: Optional[bool] =
|
| 53 |
):
|
| 54 |
fen = current_board.fen()
|
| 55 |
pgn = current_board.root().variation_san(current_board.move_stack)
|
| 56 |
-
if orientation is None:
|
| 57 |
-
orientation = current_board.turn
|
| 58 |
image_board = plot_board(current_board, orientation=orientation)
|
| 59 |
return fen, pgn, "", image_board
|
| 60 |
|
|
|
|
| 61 |
def play_user_move(
|
| 62 |
uci_move: str,
|
| 63 |
current_board: chess.Board,
|
|
@@ -65,6 +68,7 @@ def play_user_move(
|
|
| 65 |
current_board.push_uci(uci_move)
|
| 66 |
return current_board
|
| 67 |
|
|
|
|
| 68 |
def play_ai_move(
|
| 69 |
current_board: chess.Board,
|
| 70 |
temperature: float = 0.1,
|
|
@@ -76,6 +80,7 @@ def play_ai_move(
|
|
| 76 |
current_board.push_uci(uci_move.strip())
|
| 77 |
return current_board
|
| 78 |
|
|
|
|
| 79 |
def try_play_move(
|
| 80 |
username: str,
|
| 81 |
move_to_play: str,
|
|
@@ -83,7 +88,10 @@ def try_play_move(
|
|
| 83 |
):
|
| 84 |
if current_board.is_game_over():
|
| 85 |
gr.Warning("The game is already over")
|
| 86 |
-
return
|
|
|
|
|
|
|
|
|
|
| 87 |
try:
|
| 88 |
current_board = play_user_move(move_to_play.strip(), current_board)
|
| 89 |
if current_board.is_game_over():
|
|
@@ -93,17 +101,20 @@ def try_play_move(
|
|
| 93 |
{
|
| 94 |
"username": username,
|
| 95 |
"winin": current_board.fullmove_number,
|
| 96 |
-
"pgn": current_board.root().variation_san(
|
|
|
|
|
|
|
| 97 |
}
|
| 98 |
)
|
| 99 |
run.finish()
|
| 100 |
-
return
|
|
|
|
|
|
|
|
|
|
| 101 |
except:
|
| 102 |
gr.Warning("Invalid move")
|
| 103 |
return *render_board(current_board), current_board
|
| 104 |
-
temperature_retries = [
|
| 105 |
-
(i+1)/10 for i in range(10)
|
| 106 |
-
]
|
| 107 |
for temperature in temperature_retries:
|
| 108 |
try:
|
| 109 |
current_board = play_ai_move(current_board, temperature=temperature)
|
|
@@ -187,6 +198,7 @@ with gr.Blocks() as interface:
|
|
| 187 |
if is_ai_white:
|
| 188 |
board = play_ai_move(board)
|
| 189 |
return *render_board(board), board
|
|
|
|
| 190 |
reset_button.click(
|
| 191 |
reset_board,
|
| 192 |
outputs=[*static_outputs, state_board],
|
|
|
|
| 15 |
from . import constants
|
| 16 |
|
| 17 |
model_name = "yp-edu/gpt2-stockfish-debug"
|
| 18 |
+
headers = {
|
| 19 |
+
"X-Wait-For-Model": "true",
|
| 20 |
+
"X-Use-Cache": "false",
|
| 21 |
+
}
|
| 22 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers)
|
| 23 |
inference_fn = client.text_generation
|
| 24 |
|
| 25 |
|
| 26 |
def plot_board(
|
| 27 |
board: chess.Board,
|
| 28 |
+
orientation: Optional[bool] = None,
|
| 29 |
):
|
| 30 |
+
if orientation is None:
|
| 31 |
+
orientation = board.turn
|
| 32 |
try:
|
| 33 |
last_move = board.peek()
|
| 34 |
arrows = [(last_move.from_square, last_move.to_square)]
|
|
|
|
| 50 |
f.write(svg_board)
|
| 51 |
return f"{constants.FIGURE_DIRECTORY}/board_{id}.svg"
|
| 52 |
|
| 53 |
+
|
| 54 |
def render_board(
|
| 55 |
current_board: chess.Board,
|
| 56 |
+
orientation: Optional[bool] = None,
|
| 57 |
):
|
| 58 |
fen = current_board.fen()
|
| 59 |
pgn = current_board.root().variation_san(current_board.move_stack)
|
|
|
|
|
|
|
| 60 |
image_board = plot_board(current_board, orientation=orientation)
|
| 61 |
return fen, pgn, "", image_board
|
| 62 |
|
| 63 |
+
|
| 64 |
def play_user_move(
|
| 65 |
uci_move: str,
|
| 66 |
current_board: chess.Board,
|
|
|
|
| 68 |
current_board.push_uci(uci_move)
|
| 69 |
return current_board
|
| 70 |
|
| 71 |
+
|
| 72 |
def play_ai_move(
|
| 73 |
current_board: chess.Board,
|
| 74 |
temperature: float = 0.1,
|
|
|
|
| 80 |
current_board.push_uci(uci_move.strip())
|
| 81 |
return current_board
|
| 82 |
|
| 83 |
+
|
| 84 |
def try_play_move(
|
| 85 |
username: str,
|
| 86 |
move_to_play: str,
|
|
|
|
| 88 |
):
|
| 89 |
if current_board.is_game_over():
|
| 90 |
gr.Warning("The game is already over")
|
| 91 |
+
return (
|
| 92 |
+
*render_board(current_board, orientation=not current_board.turn),
|
| 93 |
+
current_board,
|
| 94 |
+
)
|
| 95 |
try:
|
| 96 |
current_board = play_user_move(move_to_play.strip(), current_board)
|
| 97 |
if current_board.is_game_over():
|
|
|
|
| 101 |
{
|
| 102 |
"username": username,
|
| 103 |
"winin": current_board.fullmove_number,
|
| 104 |
+
"pgn": current_board.root().variation_san(
|
| 105 |
+
current_board.move_stack
|
| 106 |
+
),
|
| 107 |
}
|
| 108 |
)
|
| 109 |
run.finish()
|
| 110 |
+
return (
|
| 111 |
+
*render_board(current_board, orientation=not current_board.turn),
|
| 112 |
+
current_board,
|
| 113 |
+
)
|
| 114 |
except:
|
| 115 |
gr.Warning("Invalid move")
|
| 116 |
return *render_board(current_board), current_board
|
| 117 |
+
temperature_retries = [(i + 1) / 10 for i in range(10)]
|
|
|
|
|
|
|
| 118 |
for temperature in temperature_retries:
|
| 119 |
try:
|
| 120 |
current_board = play_ai_move(current_board, temperature=temperature)
|
|
|
|
| 198 |
if is_ai_white:
|
| 199 |
board = play_ai_move(board)
|
| 200 |
return *render_board(board), board
|
| 201 |
+
|
| 202 |
reset_button.click(
|
| 203 |
reset_board,
|
| 204 |
outputs=[*static_outputs, state_board],
|
src/state.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Global state of the app.
|
| 2 |
+
"""
|
| 3 |
+
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
from transformers import AutoConfig
|
| 7 |
+
import torch
|
| 8 |
+
from nnsight import LanguageModel
|
| 9 |
+
|
| 10 |
+
conf = AutoConfig.from_pretrained("yp-edu/gpt2-stockfish-debug")
|
| 11 |
+
model = LanguageModel("yp-edu/gpt2-stockfish-debug")
|
| 12 |
+
model.eval()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def make_prompt(fen):
|
| 16 |
+
board, player, castling, *fen_remaining = fen.split()
|
| 17 |
+
board = re.sub(r"(\d)", lambda m: "0" * int(m.group(1)), board)
|
| 18 |
+
spaced_board = " ".join(board)
|
| 19 |
+
spaced_castling = " ".join(castling)
|
| 20 |
+
full_fen = f"{spaced_board} {player} {spaced_castling} {' '.join(fen_remaining)}"
|
| 21 |
+
return f"FEN: {full_fen} \nMOVE:"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def model_cache(fen):
|
| 25 |
+
global model
|
| 26 |
+
prompt = f"FEN: {fen}\nMOVE:"
|
| 27 |
+
attentions = {i: [] for i in range(12)}
|
| 28 |
+
with model.generate(prompt, max_new_tokens=10, output_attentions=True) as tracer:
|
| 29 |
+
out = model.generator.output.save()
|
| 30 |
+
for i in range(10):
|
| 31 |
+
for i in range(12):
|
| 32 |
+
attentions[i].append(model.transformer.h[i].attn.output[2].save())
|
| 33 |
+
tracer.next()
|
| 34 |
+
real_attentions = {}
|
| 35 |
+
for i in range(12):
|
| 36 |
+
real_attentions[i] = []
|
| 37 |
+
for a in attentions[i]:
|
| 38 |
+
try:
|
| 39 |
+
_ = a.shape
|
| 40 |
+
real_attentions[i].append(a)
|
| 41 |
+
except ValueError:
|
| 42 |
+
break
|
| 43 |
+
return out, real_attentions
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def attribute_seqence(fen, out, attn_tensor):
|
| 47 |
+
global model
|
| 48 |
+
|
| 49 |
+
out_str = model.tokenizer.batch_decode(out)[0]
|
src/visualisation.py
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Visualisation utils.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import chess
|
| 6 |
+
import chess.svg
|
| 7 |
+
import matplotlib
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
COLOR_MAP = matplotlib.colormaps["RdYlBu_r"].resampled(1000)
|
| 12 |
+
ALPHA = 1.0
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def render_heatmap(
|
| 16 |
+
board,
|
| 17 |
+
heatmap,
|
| 18 |
+
square=None,
|
| 19 |
+
vmin=None,
|
| 20 |
+
vmax=None,
|
| 21 |
+
arrows=None,
|
| 22 |
+
normalise="none",
|
| 23 |
+
):
|
| 24 |
+
"""
|
| 25 |
+
Render a heatmap on the board.
|
| 26 |
+
"""
|
| 27 |
+
if normalise == "abs":
|
| 28 |
+
a_max = heatmap.abs().max()
|
| 29 |
+
if a_max != 0:
|
| 30 |
+
heatmap = heatmap / a_max
|
| 31 |
+
vmin = -1
|
| 32 |
+
vmax = 1
|
| 33 |
+
if vmin is None:
|
| 34 |
+
vmin = heatmap.min()
|
| 35 |
+
if vmax is None:
|
| 36 |
+
vmax = heatmap.max()
|
| 37 |
+
norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax, clip=False)
|
| 38 |
+
|
| 39 |
+
color_dict = {}
|
| 40 |
+
for square_index in range(64):
|
| 41 |
+
color = COLOR_MAP(norm(heatmap[square_index]))
|
| 42 |
+
color = (*color[:3], ALPHA)
|
| 43 |
+
color_dict[square_index] = matplotlib.colors.to_hex(color, keep_alpha=True)
|
| 44 |
+
fig = plt.figure(figsize=(6, 0.6))
|
| 45 |
+
ax = plt.gca()
|
| 46 |
+
ax.axis("off")
|
| 47 |
+
fig.colorbar(
|
| 48 |
+
matplotlib.cm.ScalarMappable(norm=norm, cmap=COLOR_MAP),
|
| 49 |
+
ax=ax,
|
| 50 |
+
orientation="horizontal",
|
| 51 |
+
fraction=1.0,
|
| 52 |
+
)
|
| 53 |
+
if square is not None:
|
| 54 |
+
try:
|
| 55 |
+
check = chess.parse_square(square)
|
| 56 |
+
except ValueError:
|
| 57 |
+
check = None
|
| 58 |
+
else:
|
| 59 |
+
check = None
|
| 60 |
+
if arrows is None:
|
| 61 |
+
arrows = []
|
| 62 |
+
plt.close()
|
| 63 |
+
return (
|
| 64 |
+
chess.svg.board(
|
| 65 |
+
board,
|
| 66 |
+
check=check,
|
| 67 |
+
fill=color_dict,
|
| 68 |
+
size=350,
|
| 69 |
+
arrows=arrows,
|
| 70 |
+
),
|
| 71 |
+
fig,
|
| 72 |
+
)
|