Guetat Youssef
commited on
Commit
·
9774f95
1
Parent(s):
aba82e3
test
Browse files
app.py
CHANGED
@@ -69,7 +69,7 @@ def train_model_background(job_id):
|
|
69 |
|
70 |
# Import heavy libraries after setting cache paths
|
71 |
import torch
|
72 |
-
from datasets import load_dataset
|
73 |
from huggingface_hub import login
|
74 |
from transformers import (
|
75 |
AutoModelForCausalLM,
|
@@ -77,7 +77,6 @@ def train_model_background(job_id):
|
|
77 |
TrainingArguments,
|
78 |
Trainer,
|
79 |
TrainerCallback,
|
80 |
-
DataCollatorForLanguageModeling
|
81 |
)
|
82 |
from peft import (
|
83 |
LoraConfig,
|
@@ -93,9 +92,10 @@ def train_model_background(job_id):
|
|
93 |
progress.message = "Loading base model and tokenizer..."
|
94 |
|
95 |
# === Configuration ===
|
96 |
-
base_model = "microsoft/DialoGPT-small"
|
97 |
dataset_name = "ruslanmv/ai-medical-chatbot"
|
98 |
new_model = f"trained-model-{job_id}"
|
|
|
99 |
|
100 |
# === Load Model and Tokenizer ===
|
101 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -115,6 +115,9 @@ def train_model_background(job_id):
|
|
115 |
# Add padding token if not present
|
116 |
if tokenizer.pad_token is None:
|
117 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
|
|
|
118 |
|
119 |
progress.status = "preparing_model"
|
120 |
progress.message = "Setting up LoRA configuration..."
|
@@ -139,49 +142,62 @@ def train_model_background(job_id):
|
|
139 |
cache_dir=temp_dir,
|
140 |
trust_remote_code=True
|
141 |
)
|
142 |
-
dataset = dataset.shuffle(seed=65).select(range(
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
texts
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
# Tokenize
|
152 |
-
tokenized = tokenizer(
|
153 |
-
texts,
|
154 |
-
truncation=True,
|
155 |
-
padding=False,
|
156 |
-
max_length=256,
|
157 |
-
return_tensors=None
|
158 |
-
)
|
159 |
-
|
160 |
-
# For causal LM, labels are the same as input_ids
|
161 |
-
tokenized["labels"] = tokenized["input_ids"].copy()
|
162 |
-
return tokenized
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
tokenize_function,
|
167 |
-
batched=True,
|
168 |
-
remove_columns=dataset.column_names,
|
169 |
-
desc="Tokenizing dataset"
|
170 |
-
)
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
# Calculate total training steps
|
179 |
-
train_size = len(tokenized_dataset)
|
180 |
batch_size = 2
|
181 |
gradient_accumulation_steps = 1
|
182 |
num_epochs = 1
|
183 |
|
184 |
-
steps_per_epoch =
|
185 |
total_steps = steps_per_epoch * num_epochs
|
186 |
|
187 |
progress.total_steps = total_steps
|
@@ -198,10 +214,10 @@ def train_model_background(job_id):
|
|
198 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
199 |
num_train_epochs=num_epochs,
|
200 |
logging_steps=1,
|
201 |
-
save_steps=
|
202 |
save_total_limit=1,
|
203 |
learning_rate=5e-5,
|
204 |
-
warmup_steps=
|
205 |
logging_strategy="steps",
|
206 |
save_strategy="steps",
|
207 |
fp16=False,
|
@@ -209,6 +225,7 @@ def train_model_background(job_id):
|
|
209 |
dataloader_num_workers=0,
|
210 |
remove_unused_columns=False,
|
211 |
report_to=None,
|
|
|
212 |
)
|
213 |
|
214 |
# Custom callback to track progress
|
@@ -219,14 +236,19 @@ def train_model_background(job_id):
|
|
219 |
|
220 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
221 |
current_time = time.time()
|
222 |
-
# Update every
|
223 |
-
if current_time - self.last_update >=
|
224 |
self.progress_tracker.update_progress(
|
225 |
state.global_step,
|
226 |
state.max_steps,
|
227 |
f"Training step {state.global_step}/{state.max_steps}"
|
228 |
)
|
229 |
self.last_update = current_time
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
def on_train_begin(self, args, state, control, **kwargs):
|
232 |
self.progress_tracker.status = "training"
|
@@ -240,9 +262,9 @@ def train_model_background(job_id):
|
|
240 |
trainer = Trainer(
|
241 |
model=model,
|
242 |
args=training_args,
|
243 |
-
train_dataset=
|
244 |
-
data_collator=data_collator,
|
245 |
callbacks=[ProgressCallback(progress)],
|
|
|
246 |
)
|
247 |
|
248 |
# === Train & Save ===
|
|
|
69 |
|
70 |
# Import heavy libraries after setting cache paths
|
71 |
import torch
|
72 |
+
from datasets import load_dataset, Dataset
|
73 |
from huggingface_hub import login
|
74 |
from transformers import (
|
75 |
AutoModelForCausalLM,
|
|
|
77 |
TrainingArguments,
|
78 |
Trainer,
|
79 |
TrainerCallback,
|
|
|
80 |
)
|
81 |
from peft import (
|
82 |
LoraConfig,
|
|
|
92 |
progress.message = "Loading base model and tokenizer..."
|
93 |
|
94 |
# === Configuration ===
|
95 |
+
base_model = "microsoft/DialoGPT-small"
|
96 |
dataset_name = "ruslanmv/ai-medical-chatbot"
|
97 |
new_model = f"trained-model-{job_id}"
|
98 |
+
max_length = 256
|
99 |
|
100 |
# === Load Model and Tokenizer ===
|
101 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
115 |
# Add padding token if not present
|
116 |
if tokenizer.pad_token is None:
|
117 |
tokenizer.pad_token = tokenizer.eos_token
|
118 |
+
|
119 |
+
# Resize token embeddings if needed
|
120 |
+
model.resize_token_embeddings(len(tokenizer))
|
121 |
|
122 |
progress.status = "preparing_model"
|
123 |
progress.message = "Setting up LoRA configuration..."
|
|
|
142 |
cache_dir=temp_dir,
|
143 |
trust_remote_code=True
|
144 |
)
|
145 |
+
dataset = dataset.shuffle(seed=65).select(range(30)) # Use only 30 samples for faster testing
|
146 |
|
147 |
+
# Custom dataset class for proper handling
|
148 |
+
class CustomDataset(torch.utils.data.Dataset):
|
149 |
+
def __init__(self, texts, tokenizer, max_length):
|
150 |
+
self.texts = texts
|
151 |
+
self.tokenizer = tokenizer
|
152 |
+
self.max_length = max_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
+
def __len__(self):
|
155 |
+
return len(self.texts)
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
def __getitem__(self, idx):
|
158 |
+
text = self.texts[idx]
|
159 |
+
|
160 |
+
# Tokenize the text
|
161 |
+
encoding = self.tokenizer(
|
162 |
+
text,
|
163 |
+
truncation=True,
|
164 |
+
padding='max_length',
|
165 |
+
max_length=self.max_length,
|
166 |
+
return_tensors='pt'
|
167 |
+
)
|
168 |
+
|
169 |
+
# Flatten the tensors (remove batch dimension)
|
170 |
+
input_ids = encoding['input_ids'].squeeze()
|
171 |
+
attention_mask = encoding['attention_mask'].squeeze()
|
172 |
+
|
173 |
+
# For causal language modeling, labels are the same as input_ids
|
174 |
+
# But we shift them so the model predicts the next token
|
175 |
+
labels = input_ids.clone()
|
176 |
+
|
177 |
+
# Set labels to -100 for padding tokens (they won't contribute to loss)
|
178 |
+
labels[attention_mask == 0] = -100
|
179 |
+
|
180 |
+
return {
|
181 |
+
'input_ids': input_ids,
|
182 |
+
'attention_mask': attention_mask,
|
183 |
+
'labels': labels
|
184 |
+
}
|
185 |
+
|
186 |
+
# Prepare texts
|
187 |
+
texts = []
|
188 |
+
for item in dataset:
|
189 |
+
text = f"Patient: {item['Patient']}\nDoctor: {item['Doctor']}{tokenizer.eos_token}"
|
190 |
+
texts.append(text)
|
191 |
+
|
192 |
+
# Create custom dataset
|
193 |
+
train_dataset = CustomDataset(texts, tokenizer, max_length)
|
194 |
|
195 |
# Calculate total training steps
|
|
|
196 |
batch_size = 2
|
197 |
gradient_accumulation_steps = 1
|
198 |
num_epochs = 1
|
199 |
|
200 |
+
steps_per_epoch = len(train_dataset) // (batch_size * gradient_accumulation_steps)
|
201 |
total_steps = steps_per_epoch * num_epochs
|
202 |
|
203 |
progress.total_steps = total_steps
|
|
|
214 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
215 |
num_train_epochs=num_epochs,
|
216 |
logging_steps=1,
|
217 |
+
save_steps=15,
|
218 |
save_total_limit=1,
|
219 |
learning_rate=5e-5,
|
220 |
+
warmup_steps=2,
|
221 |
logging_strategy="steps",
|
222 |
save_strategy="steps",
|
223 |
fp16=False,
|
|
|
225 |
dataloader_num_workers=0,
|
226 |
remove_unused_columns=False,
|
227 |
report_to=None,
|
228 |
+
prediction_loss_only=True,
|
229 |
)
|
230 |
|
231 |
# Custom callback to track progress
|
|
|
236 |
|
237 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
238 |
current_time = time.time()
|
239 |
+
# Update every 3 seconds
|
240 |
+
if current_time - self.last_update >= 3:
|
241 |
self.progress_tracker.update_progress(
|
242 |
state.global_step,
|
243 |
state.max_steps,
|
244 |
f"Training step {state.global_step}/{state.max_steps}"
|
245 |
)
|
246 |
self.last_update = current_time
|
247 |
+
|
248 |
+
# Log training metrics if available
|
249 |
+
if logs:
|
250 |
+
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
251 |
+
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}"
|
252 |
|
253 |
def on_train_begin(self, args, state, control, **kwargs):
|
254 |
self.progress_tracker.status = "training"
|
|
|
262 |
trainer = Trainer(
|
263 |
model=model,
|
264 |
args=training_args,
|
265 |
+
train_dataset=train_dataset,
|
|
|
266 |
callbacks=[ProgressCallback(progress)],
|
267 |
+
tokenizer=tokenizer,
|
268 |
)
|
269 |
|
270 |
# === Train & Save ===
|