File size: 11,585 Bytes
e4256df
 
 
 
3349c56
 
e4256df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3349c56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4256df
3349c56
 
 
 
aba82e3
 
 
3349c56
 
 
 
 
 
 
e4256df
3349c56
 
e4256df
 
 
 
 
3349c56
e4256df
3349c56
 
aba82e3
e4256df
 
3349c56
aba82e3
3349c56
 
e4256df
3349c56
 
 
 
 
 
 
 
 
 
e4256df
 
 
 
aba82e3
e4256df
aba82e3
3349c56
 
e4256df
 
 
 
 
 
 
 
 
3349c56
 
 
 
 
e4256df
aba82e3
3349c56
aba82e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4256df
aba82e3
 
 
 
 
 
 
 
 
 
 
 
 
e4256df
 
aba82e3
 
3349c56
e4256df
 
 
 
 
 
 
 
 
 
3349c56
 
 
e4256df
3349c56
e4256df
 
 
 
aba82e3
 
 
3349c56
e4256df
aba82e3
e4256df
 
3349c56
 
aba82e3
e4256df
 
 
10b3fe6
e4256df
 
 
 
 
 
aba82e3
 
e4256df
 
 
 
 
 
10b3fe6
 
 
 
 
 
 
 
e4256df
 
aba82e3
e4256df
 
aba82e3
 
3349c56
e4256df
 
 
 
3349c56
aba82e3
e4256df
 
 
3349c56
 
 
 
 
 
 
 
 
 
 
 
 
e4256df
 
 
 
 
3349c56
 
 
 
 
 
 
e4256df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
from flask import Flask, jsonify, request
import threading
import time
import os
import tempfile
import shutil
import uuid
from datetime import datetime, timedelta

app = Flask(__name__)

# Global variables to track training progress
training_jobs = {}

class TrainingProgress:
    def __init__(self, job_id):
        self.job_id = job_id
        self.status = "initializing"
        self.progress = 0
        self.current_step = 0
        self.total_steps = 0
        self.start_time = time.time()
        self.estimated_finish_time = None
        self.message = "Starting training..."
        self.error = None

    def update_progress(self, current_step, total_steps, message=""):
        self.current_step = current_step
        self.total_steps = total_steps
        self.progress = (current_step / total_steps) * 100 if total_steps > 0 else 0
        self.message = message
        
        # Calculate estimated finish time
        if current_step > 0:
            elapsed_time = time.time() - self.start_time
            time_per_step = elapsed_time / current_step
            remaining_steps = total_steps - current_step
            estimated_remaining_time = remaining_steps * time_per_step
            self.estimated_finish_time = datetime.now() + timedelta(seconds=estimated_remaining_time)

    def to_dict(self):
        return {
            "job_id": self.job_id,
            "status": self.status,
            "progress": round(self.progress, 2),
            "current_step": self.current_step,
            "total_steps": self.total_steps,
            "message": self.message,
            "estimated_finish_time": self.estimated_finish_time.isoformat() if self.estimated_finish_time else None,
            "error": self.error
        }

def train_model_background(job_id):
    """Background training function with progress tracking"""
    progress = training_jobs[job_id]
    
    try:
        # Create a temporary directory for this job
        temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_")
        
        # Set environment variables for caching
        os.environ['HF_HOME'] = temp_dir
        os.environ['TRANSFORMERS_CACHE'] = temp_dir
        os.environ['HF_DATASETS_CACHE'] = temp_dir
        os.environ['TORCH_HOME'] = temp_dir
        
        progress.status = "loading_libraries"
        progress.message = "Loading required libraries..."
        
        # Import heavy libraries after setting cache paths
        import torch
        from datasets import load_dataset
        from huggingface_hub import login
        from transformers import (
            AutoModelForCausalLM,
            AutoTokenizer,
            TrainingArguments,
            Trainer,
            TrainerCallback,
            DataCollatorForLanguageModeling
        )
        from peft import (
            LoraConfig,
            get_peft_model,
        )
        
        # === Authentication ===
        hf_token = os.getenv('HF_TOKEN')
        if hf_token:
            login(token=hf_token)
        
        progress.status = "loading_model"
        progress.message = "Loading base model and tokenizer..."

        # === Configuration ===
        base_model = "microsoft/DialoGPT-small"  # Smaller model for testing
        dataset_name = "ruslanmv/ai-medical-chatbot"
        new_model = f"trained-model-{job_id}"
        
        # === Load Model and Tokenizer ===
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            cache_dir=temp_dir,
            torch_dtype=torch.float32,
            device_map="auto" if torch.cuda.is_available() else "cpu",
            trust_remote_code=True
        )
        
        tokenizer = AutoTokenizer.from_pretrained(
            base_model,
            cache_dir=temp_dir,
            trust_remote_code=True
        )
        
        # Add padding token if not present
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token

        progress.status = "preparing_model"
        progress.message = "Setting up LoRA configuration..."

        # === LoRA Config ===
        peft_config = LoraConfig(
            r=8,
            lora_alpha=16,
            lora_dropout=0.1,
            bias="none",
            task_type="CAUSAL_LM",
        )
        model = get_peft_model(model, peft_config)

        progress.status = "loading_dataset"
        progress.message = "Loading and preparing dataset..."

        # === Load & Prepare Dataset ===
        dataset = load_dataset(
            dataset_name, 
            split="all",
            cache_dir=temp_dir,
            trust_remote_code=True
        )
        dataset = dataset.shuffle(seed=65).select(range(50))  # Use only 50 samples for faster testing

        def tokenize_function(examples):
            # Format the text
            texts = []
            for i in range(len(examples['Patient'])):
                text = f"Patient: {examples['Patient'][i]}\nDoctor: {examples['Doctor'][i]}{tokenizer.eos_token}"
                texts.append(text)
            
            # Tokenize
            tokenized = tokenizer(
                texts,
                truncation=True,
                padding=False,
                max_length=256,
                return_tensors=None
            )
            
            # For causal LM, labels are the same as input_ids
            tokenized["labels"] = tokenized["input_ids"].copy()
            return tokenized

        # Tokenize dataset
        tokenized_dataset = dataset.map(
            tokenize_function,
            batched=True,
            remove_columns=dataset.column_names,
            desc="Tokenizing dataset"
        )

        # Data collator for language modeling
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm=False,  # We're doing causal LM, not masked LM
        )

        # Calculate total training steps
        train_size = len(tokenized_dataset)
        batch_size = 2
        gradient_accumulation_steps = 1
        num_epochs = 1
        
        steps_per_epoch = train_size // (batch_size * gradient_accumulation_steps)
        total_steps = steps_per_epoch * num_epochs
        
        progress.total_steps = total_steps
        progress.status = "training"
        progress.message = "Starting training..."

        # === Training Arguments ===
        output_dir = os.path.join(temp_dir, new_model)
        os.makedirs(output_dir, exist_ok=True)
        
        training_args = TrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            num_train_epochs=num_epochs,
            logging_steps=1,
            save_steps=20,
            save_total_limit=1,
            learning_rate=5e-5,
            warmup_steps=5,
            logging_strategy="steps",
            save_strategy="steps",
            fp16=False,
            bf16=False,
            dataloader_num_workers=0,
            remove_unused_columns=False,
            report_to=None,
        )

        # Custom callback to track progress
        class ProgressCallback(TrainerCallback):
            def __init__(self, progress_tracker):
                self.progress_tracker = progress_tracker
                self.last_update = time.time()
            
            def on_log(self, args, state, control, model=None, logs=None, **kwargs):
                current_time = time.time()
                # Update every 5 seconds or on significant step changes
                if current_time - self.last_update >= 5 or state.global_step % 2 == 0:
                    self.progress_tracker.update_progress(
                        state.global_step, 
                        state.max_steps,
                        f"Training step {state.global_step}/{state.max_steps}"
                    )
                    self.last_update = current_time
            
            def on_train_begin(self, args, state, control, **kwargs):
                self.progress_tracker.status = "training"
                self.progress_tracker.message = "Training started..."
            
            def on_train_end(self, args, state, control, **kwargs):
                self.progress_tracker.status = "saving"
                self.progress_tracker.message = "Training complete, saving model..."

        # === Trainer Initialization ===
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=tokenized_dataset,
            data_collator=data_collator,
            callbacks=[ProgressCallback(progress)],
        )

        # === Train & Save ===
        trainer.train()
        trainer.save_model(output_dir)
        tokenizer.save_pretrained(output_dir)
        
        progress.status = "completed"
        progress.progress = 100
        progress.message = f"Training completed! Model saved to {output_dir}"
        
        # Clean up temporary directory after a delay
        def cleanup_temp_dir():
            time.sleep(300)  # Wait 5 minutes before cleanup
            try:
                shutil.rmtree(temp_dir)
            except:
                pass
        
        cleanup_thread = threading.Thread(target=cleanup_temp_dir)
        cleanup_thread.daemon = True
        cleanup_thread.start()
        
    except Exception as e:
        progress.status = "error"
        progress.error = str(e)
        progress.message = f"Training failed: {str(e)}"
        
        # Clean up on error
        try:
            if 'temp_dir' in locals():
                shutil.rmtree(temp_dir)
        except:
            pass

# ============== API ROUTES ==============
@app.route('/api/train', methods=['POST'])
def start_training():
    """Start training and return job ID for tracking"""
    try:
        job_id = str(uuid.uuid4())[:8]  # Short UUID
        progress = TrainingProgress(job_id)
        training_jobs[job_id] = progress
        
        # Start training in background thread
        training_thread = threading.Thread(target=train_model_background, args=(job_id,))
        training_thread.daemon = True
        training_thread.start()
        
        return jsonify({
            "status": "started",
            "job_id": job_id,
            "message": "Training started. Use /api/status/<job_id> to track progress."
        })
        
    except Exception as e:
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/api/status/<job_id>', methods=['GET'])
def get_training_status(job_id):
    """Get training progress and estimated completion time"""
    if job_id not in training_jobs:
        return jsonify({"status": "error", "message": "Job not found"}), 404
    
    progress = training_jobs[job_id]
    return jsonify(progress.to_dict())

@app.route('/api/jobs', methods=['GET'])
def list_jobs():
    """List all training jobs"""
    jobs = {job_id: progress.to_dict() for job_id, progress in training_jobs.items()}
    return jsonify({"jobs": jobs})

@app.route('/')
def home():
    return jsonify({
        "message": "Welcome to LLaMA Fine-tuning API!",
        "endpoints": {
            "POST /api/train": "Start training",
            "GET /api/status/<job_id>": "Get training status",
            "GET /api/jobs": "List all jobs"
        }
    })

@app.route('/health')
def health():
    return jsonify({"status": "healthy"})

if __name__ == '__main__':
    port = int(os.environ.get('PORT', 7860))  # HF Spaces uses port 7860
    app.run(host='0.0.0.0', port=port, debug=False)