File size: 19,718 Bytes
28d8f8e
e4256df
 
 
3349c56
 
e4256df
28d8f8e
 
e4256df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d8f8e
 
e4256df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d8f8e
 
 
e4256df
 
28d8f8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
 
0e7f220
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
8f8763e
e4256df
8f8763e
0e7f220
8f8763e
 
 
0e7f220
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
 
0e7f220
 
8f8763e
0e7f220
 
 
 
8f8763e
 
0e7f220
 
 
8f8763e
0e7f220
 
8f8763e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e7f220
8f8763e
 
 
 
 
 
 
 
 
0e7f220
 
8f8763e
 
0e7f220
8f8763e
0e7f220
8f8763e
0e7f220
 
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
0e7f220
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
 
 
0e7f220
 
 
8f8763e
0e7f220
 
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
0e7f220
 
 
 
 
 
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
8f8763e
0e7f220
 
 
8f8763e
0e7f220
8f8763e
0e7f220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
28d8f8e
 
 
 
 
 
 
 
 
 
 
 
 
8f8763e
e4256df
 
 
 
 
28d8f8e
 
8f8763e
28d8f8e
8f8763e
e4256df
 
 
 
28d8f8e
 
 
 
e4256df
 
 
 
 
 
28d8f8e
 
e4256df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d8f8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4256df
 
 
 
 
 
 
 
 
28d8f8e
 
 
 
 
 
 
e4256df
28d8f8e
 
 
e4256df
28d8f8e
 
 
 
 
 
 
8f8763e
28d8f8e
 
e4256df
 
 
 
 
 
 
 
8f8763e
e4256df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
from flask import Flask, jsonify, request, send_file
import threading
import time
import os
import tempfile
import shutil
import uuid
import zipfile
import io
from datetime import datetime, timedelta

app = Flask(__name__)

# Global variables to track training progress
training_jobs = {}

class TrainingProgress:
    def __init__(self, job_id):
        self.job_id = job_id
        self.status = "initializing"
        self.progress = 0
        self.current_step = 0
        self.total_steps = 0
        self.start_time = time.time()
        self.estimated_finish_time = None
        self.message = "Starting training..."
        self.error = None
        self.model_path = None
        self.detected_columns = None

    def update_progress(self, current_step, total_steps, message=""):
        self.current_step = current_step
        self.total_steps = total_steps
        self.progress = (current_step / total_steps) * 100 if total_steps > 0 else 0
        self.message = message
        
        # Calculate estimated finish time
        if current_step > 0:
            elapsed_time = time.time() - self.start_time
            time_per_step = elapsed_time / current_step
            remaining_steps = total_steps - current_step
            estimated_remaining_time = remaining_steps * time_per_step
            self.estimated_finish_time = datetime.now() + timedelta(seconds=estimated_remaining_time)

    def to_dict(self):
        return {
            "job_id": self.job_id,
            "status": self.status,
            "progress": round(self.progress, 2),
            "current_step": self.current_step,
            "total_steps": self.total_steps,
            "message": self.message,
            "estimated_finish_time": self.estimated_finish_time.isoformat() if self.estimated_finish_time else None,
            "error": self.error,
            "model_path": self.model_path,
            "detected_columns": self.detected_columns
        }

def detect_qa_columns(dataset):
    """Automatically detect question and answer columns in the dataset"""
    # Common patterns for question columns
    question_patterns = [
        'question', 'prompt', 'input', 'query', 'patient', 'user', 'human',
        'instruction', 'context', 'q', 'text', 'source'
    ]
    
    # Common patterns for answer columns
    answer_patterns = [
        'answer', 'response', 'output', 'reply', 'doctor', 'assistant', 'ai',
        'completion', 'target', 'a', 'label', 'ground_truth'
    ]
    
    # Get column names
    columns = list(dataset.column_names)
    
    # Find question column
    question_col = None
    for pattern in question_patterns:
        for col in columns:
            if pattern.lower() in col.lower():
                question_col = col
                break
        if question_col:
            break
    
    # Find answer column
    answer_col = None
    for pattern in answer_patterns:
        for col in columns:
            if pattern.lower() in col.lower() and col != question_col:
                answer_col = col
                break
        if answer_col:
            break
    
    # Fallback: use first two text columns if patterns don't match
    if not question_col or not answer_col:
        text_columns = []
        for col in columns:
            # Check if column contains text data
            sample = dataset[0][col]
            if isinstance(sample, str) and len(sample.strip()) > 0:
                text_columns.append(col)
        
        if len(text_columns) >= 2:
            question_col = text_columns[0]
            answer_col = text_columns[1]
        elif len(text_columns) == 1:
            # Single column case - use it for both (self-supervised)
            question_col = answer_col = text_columns[0]
    
    return question_col, answer_col

def train_model_background(job_id, dataset_name, base_model_name=None):
    """Background training function with fixed tokenization"""
    progress = training_jobs[job_id]
    
    try:
        # Create a temporary directory for this job
        temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_")
        
        # Set environment variables for caching
        os.environ['HF_HOME'] = temp_dir
        os.environ['TRANSFORMERS_CACHE'] = temp_dir
        os.environ['HF_DATASETS_CACHE'] = temp_dir
        os.environ['TORCH_HOME'] = temp_dir
        
        progress.status = "loading_libraries"
        progress.message = "Loading required libraries..."
        
        # Import heavy libraries after setting cache paths
        import torch
        from datasets import load_dataset, Dataset
        from huggingface_hub import login
        from transformers import (
            AutoModelForCausalLM,
            AutoTokenizer,
            TrainingArguments,
            Trainer,
            TrainerCallback,
            DataCollatorForLanguageModeling
        )
        from peft import (
            LoraConfig,
            get_peft_model,
            TaskType
        )
        
        # === Authentication ===
        hf_token = os.getenv('HF_TOKEN')
        if hf_token:
            login(token=hf_token)
        
        progress.status = "loading_model"
        progress.message = "Loading base model and tokenizer..."

        # === Model Configuration ===
        base_model = base_model_name or "microsoft/DialoGPT-medium"
        new_model = f"trained-model-{job_id}"
        max_length = 512
        
        # === Load Model and Tokenizer ===
        model = AutoModelForCausalLM.from_pretrained(
            base_model,
            cache_dir=temp_dir,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else "cpu",
            trust_remote_code=True,
            low_cpu_mem_usage=True
        )
        
        tokenizer = AutoTokenizer.from_pretrained(
            base_model,
            cache_dir=temp_dir,
            trust_remote_code=True,
            padding_side="right"
        )
        
        # Add padding token if not present
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.pad_token_id = tokenizer.eos_token_id
        
        # Resize token embeddings if needed
        model.resize_token_embeddings(len(tokenizer))

        progress.status = "preparing_model"
        progress.message = "Setting up LoRA configuration..."

        # === LoRA Config ===
        peft_config = LoraConfig(
            r=16,
            lora_alpha=32,
            lora_dropout=0.05,
            bias="none",
            task_type=TaskType.CAUSAL_LM,
            target_modules=["c_attn", "c_proj"],
        )
        model = get_peft_model(model, peft_config)
        
        # Print trainable parameters
        model.print_trainable_parameters()

        progress.status = "loading_dataset"
        progress.message = "Loading and preparing dataset..."

        # === Load & Prepare Dataset ===
        dataset = load_dataset(
            dataset_name, 
            split="train" if "train" in load_dataset(dataset_name, cache_dir=temp_dir).keys() else "all",
            cache_dir=temp_dir,
            trust_remote_code=True
        )
        
        # Automatically detect question and answer columns
        question_col, answer_col = detect_qa_columns(dataset)
        
        if not question_col or not answer_col:
            raise ValueError("Could not automatically detect question and answer columns in the dataset")
        
        progress.detected_columns = {"question": question_col, "answer": answer_col}
        progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
        
        # Use subset for faster training
        dataset_size = min(500, len(dataset))
        dataset = dataset.shuffle(seed=42).select(range(dataset_size))

        # === Fixed Text Formatting ===
        def format_conversation(example):
            question = str(example[question_col]).strip()
            answer = str(example[answer_col]).strip()
            
            # Simple format that works well with tokenizer
            conversation = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
            return {"text": conversation}
        
        # Apply formatting
        formatted_dataset = dataset.map(format_conversation, remove_columns=dataset.column_names)
        
        # Filter out very short or very long examples
        formatted_dataset = formatted_dataset.filter(lambda x: 10 < len(x["text"]) < max_length * 3)

        # === Fixed Tokenization Function ===
        def tokenize_function(examples):
            # Tokenize the text
            model_inputs = tokenizer(
                examples["text"],
                truncation=True,
                padding=False,  # Will be handled by data collator
                max_length=max_length,
                return_tensors=None,
            )
            
            # For causal LM, labels are the same as input_ids
            model_inputs["labels"] = model_inputs["input_ids"].copy()
            return model_inputs

        # Tokenize dataset
        tokenized_dataset = formatted_dataset.map(
            tokenize_function,
            batched=True,
            remove_columns=formatted_dataset.column_names,
            desc="Tokenizing dataset",
        )

        # === Training Configuration ===
        batch_size = 4 if torch.cuda.is_available() else 2
        gradient_accumulation_steps = 2
        num_epochs = 2
        learning_rate = 2e-4
        
        steps_per_epoch = len(tokenized_dataset) // (batch_size * gradient_accumulation_steps)
        total_steps = steps_per_epoch * num_epochs
        warmup_steps = max(10, total_steps // 10)
        
        progress.total_steps = total_steps
        progress.status = "training"
        progress.message = "Starting training..."

        output_dir = os.path.join(temp_dir, new_model)
        os.makedirs(output_dir, exist_ok=True)
        
        training_args = TrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            num_train_epochs=num_epochs,
            learning_rate=learning_rate,
            warmup_steps=warmup_steps,
            logging_steps=5,
            save_steps=max(10, total_steps // 4),
            save_total_limit=2,
            evaluation_strategy="no",
            logging_strategy="steps",
            save_strategy="steps",
            fp16=torch.cuda.is_available(),
            bf16=False,
            dataloader_num_workers=0,
            remove_unused_columns=False,
            report_to=None,
            prediction_loss_only=True,
            optim="adamw_torch",
            weight_decay=0.01,
            lr_scheduler_type="cosine",
            gradient_checkpointing=True,
            dataloader_pin_memory=False,
        )

        # === Data Collator ===
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=tokenizer,
            mlm=False,
            return_tensors="pt",
            pad_to_multiple_of=8 if torch.cuda.is_available() else None,
        )

        # Custom callback to track progress
        class ProgressCallback(TrainerCallback):
            def __init__(self, progress_tracker):
                self.progress_tracker = progress_tracker
                self.last_update = time.time()
            
            def on_log(self, args, state, control, model=None, logs=None, **kwargs):
                current_time = time.time()
                if current_time - self.last_update >= 5:
                    self.progress_tracker.update_progress(
                        state.global_step, 
                        state.max_steps,
                        f"Training step {state.global_step}/{state.max_steps}"
                    )
                    self.last_update = current_time
                    
                    if logs:
                        loss = logs.get('train_loss', logs.get('loss', 'N/A'))
                        lr = logs.get('learning_rate', 'N/A')
                        if isinstance(loss, (int, float)):
                            loss = f"{loss:.4f}"
                        self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}, LR: {lr}"
            
            def on_train_begin(self, args, state, control, **kwargs):
                self.progress_tracker.status = "training"
                self.progress_tracker.message = "Training started..."
            
            def on_train_end(self, args, state, control, **kwargs):
                self.progress_tracker.status = "saving"
                self.progress_tracker.message = "Training complete, saving model..."

        # === Trainer Initialization ===
        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=tokenized_dataset,
            data_collator=data_collator,
            callbacks=[ProgressCallback(progress)],
            tokenizer=tokenizer,
        )

        # === Train & Save ===
        trainer.train()
        
        # Save the model properly
        trainer.save_model(output_dir)
        tokenizer.save_pretrained(output_dir)
        
        # Save additional info
        with open(os.path.join(output_dir, "base_model.txt"), "w") as f:
            f.write(base_model)
        
        training_info = {
            "base_model": base_model,
            "dataset_name": dataset_name,
            "dataset_size": len(tokenized_dataset),
            "max_length": max_length,
            "batch_size": batch_size,
            "learning_rate": learning_rate,
            "num_epochs": num_epochs,
            "total_steps": total_steps,
            "detected_columns": progress.detected_columns
        }
        
        with open(os.path.join(output_dir, "training_info.json"), "w") as f:
            import json
            json.dump(training_info, f, indent=2)
        
        # Update progress
        progress.model_path = output_dir
        progress.status = "completed"
        progress.progress = 100
        progress.message = f"Training completed successfully! Model ready for download."
        
        # Keep the temp directory for download
        def cleanup_temp_dir():
            time.sleep(7200)  # Wait 2 hours before cleanup
            try:
                shutil.rmtree(temp_dir)
                if job_id in training_jobs:
                    del training_jobs[job_id]
            except:
                pass
        
        cleanup_thread = threading.Thread(target=cleanup_temp_dir)
        cleanup_thread.daemon = True
        cleanup_thread.start()
        
    except Exception as e:
        progress.status = "error"
        progress.error = str(e)
        progress.message = f"Training failed: {str(e)}"
        
        # Clean up on error
        try:
            if 'temp_dir' in locals():
                shutil.rmtree(temp_dir)
        except:
            pass

def create_model_zip(model_path, job_id):
    """Create a zip file containing the trained model"""
    memory_file = io.BytesIO()
    
    with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
        for root, dirs, files in os.walk(model_path):
            for file in files:
                file_path = os.path.join(root, file)
                arc_name = os.path.relpath(file_path, model_path)
                zf.write(file_path, arc_name)
    
    memory_file.seek(0)
    return memory_file

# ============== API ROUTES ==============
@app.route('/api/train', methods=['POST'])
def start_training():
    """Start training and return job ID for tracking"""
    try:
        data = request.get_json() if request.is_json else {}
        dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
        base_model_name = data.get('base_model', 'microsoft/DialoGPT-medium')
        
        job_id = str(uuid.uuid4())[:8]
        progress = TrainingProgress(job_id)
        training_jobs[job_id] = progress
        
        # Start training in background thread
        training_thread = threading.Thread(
            target=train_model_background, 
            args=(job_id, dataset_name, base_model_name)
        )
        training_thread.daemon = True
        training_thread.start()
        
        return jsonify({
            "status": "started",
            "job_id": job_id,
            "dataset_name": dataset_name,
            "base_model": base_model_name,
            "message": "Training started. Use /api/status/<job_id> to track progress."
        })
        
    except Exception as e:
        return jsonify({"status": "error", "message": str(e)}), 500

@app.route('/api/status/<job_id>', methods=['GET'])
def get_training_status(job_id):
    """Get training progress and estimated completion time"""
    if job_id not in training_jobs:
        return jsonify({"status": "error", "message": "Job not found"}), 404
    
    progress = training_jobs[job_id]
    return jsonify(progress.to_dict())

@app.route('/api/download/<job_id>', methods=['GET'])
def download_model(job_id):
    """Download the trained model as a zip file"""
    if job_id not in training_jobs:
        return jsonify({"status": "error", "message": "Job not found"}), 404
    
    progress = training_jobs[job_id]
    
    if progress.status != "completed":
        return jsonify({
            "status": "error", 
            "message": f"Model not ready for download. Current status: {progress.status}"
        }), 400
    
    if not progress.model_path or not os.path.exists(progress.model_path):
        return jsonify({
            "status": "error", 
            "message": "Model files not found. They may have been cleaned up."
        }), 404
    
    try:
        # Create zip file in memory
        zip_file = create_model_zip(progress.model_path, job_id)
        
        return send_file(
            zip_file,
            as_attachment=True,
            download_name=f"trained_model_{job_id}.zip",
            mimetype='application/zip'
        )
        
    except Exception as e:
        return jsonify({"status": "error", "message": f"Download failed: {str(e)}"}), 500

@app.route('/api/jobs', methods=['GET'])
def list_jobs():
    """List all training jobs"""
    jobs = {job_id: progress.to_dict() for job_id, progress in training_jobs.items()}
    return jsonify({"jobs": jobs})

@app.route('/')
def home():
    return jsonify({
        "message": "Welcome to Enhanced LLaMA Fine-tuning API!",
        "features": [
            "Automatic question/answer column detection",
            "Configurable base model and dataset", 
            "Local model download",
            "Progress tracking with ETA"
        ],
        "endpoints": {
            "POST /api/train": "Start training (accepts dataset_name and base_model in JSON)",
            "GET /api/status/<job_id>": "Get training status and detected columns",
            "GET /api/download/<job_id>": "Download trained model as zip",
            "GET /api/jobs": "List all jobs"
        },
        "usage_example": {
            "start_training": {
                "method": "POST",
                "url": "/api/train",
                "body": {
                    "dataset_name": "your-dataset-name",
                    "base_model": "microsoft/DialoGPT-medium"
                }
            }
        }
    })

@app.route('/health')
def health():
    return jsonify({"status": "healthy"})

if __name__ == '__main__':
    port = int(os.environ.get('PORT', 7860))
    app.run(host='0.0.0.0', port=port, debug=False)