""" Central configuration for models and providers This file centralizes all configurations related to models and providers used in the application. """ # Definition of preferred providers, used in get_available_model_provider.py # PREFERRED_PROVIDERS = ["sambanova", "novita"] PREFERRED_PROVIDERS = ["fireworks-ai", "sambanova", "novita"] # Default models to evaluate for evaluation DEFAULT_EVALUATION_MODELS = [ "Qwen/QwQ-32B", "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-32B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "deepseek-ai/DeepSeek-R1-Distill-Llama-70B", "mistralai/Mistral-Small-24B-Instruct-2501", ] # Modèles alternatifs à utiliser si le modèle par défaut n'est pas disponible ALTERNATIVE_BENCHMARK_MODELS = [ "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-8B-Instruct", "Qwen/Qwen2.5-72B-Instruct", "mistralai/Mistral-Small-24B-Instruct-2501", # Modèles open-source qui peuvent fonctionner sans authentification "HuggingFaceH4/zephyr-7b-beta", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "microsoft/phi-2", ] # Required model for create_bench_config_file.py (only one default model) DEFAULT_BENCHMARK_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Llama-70B" # Models by roles for benchmark configuration # All roles use the default model except chunking BENCHMARK_MODEL_ROLES = { "ingestion": [DEFAULT_BENCHMARK_MODEL], "summarization": [DEFAULT_BENCHMARK_MODEL], "chunking": ["intfloat/multilingual-e5-large-instruct"], "single_shot_question_generation": [DEFAULT_BENCHMARK_MODEL], "multi_hop_question_generation": [DEFAULT_BENCHMARK_MODEL], } # Default evaluation timeout (in seconds) DEFAULT_EVALUATION_TIMEOUT = 60.0 # Default benchmark timeout (in seconds) DEFAULT_BENCHMARK_TIMEOUT = 300.0