demo / backend /tasks /createBench.py
tfrere's picture
update frontend
ebdfd67
raw
history blame
12.6 kB
"""
Task to ingest and transform documents to markdown using yourbench
"""
import os
import time
import pathlib
import subprocess
import threading
from typing import Optional, List, Tuple, Dict, Any
import yaml
from loguru import logger
class CreateBenchTask:
"""
Task to ingest and transform documents to markdown using yourbench
"""
def __init__(self, session_uid: str, config_path: Optional[str] = None):
"""
Initialize the ingestion task
Args:
session_uid: Session ID for this task
config_path: Path to the configuration file, will be generated if None
"""
self.session_uid = session_uid
self.logs: List[str] = []
self.is_completed = False
self.process = None
self.is_running_flag = threading.Event()
# Default config path if not provided
if config_path is None:
config_path = f"uploaded_files/{session_uid}/config.yml"
self.config_path = config_path
# Command to run yourbench - modified to avoid error with uv run
self.command = ["yourbench", "run", "--config", str(self.config_path)]
self._add_log("[INFO] Initializing ingestion task")
self._add_log(f"[INFO] Using configuration file: {self.config_path}")
def _add_log(self, message: str) -> None:
"""
Add a log message to the logs list
Args:
message: Log message to add
"""
if message not in self.logs: # Avoid duplicates
self.logs.append(message)
# Force copy of the list to avoid reference problems
self.logs = self.logs.copy()
# Log to system logs
logger.info(f"[{self.session_uid}] {message}")
def get_logs(self) -> List[str]:
"""
Get all logs for this task
Returns:
List of log messages
"""
return self.logs.copy() # Return a copy to avoid reference problems
def is_task_completed(self) -> bool:
"""
Check if the task is completed
Returns:
True if completed, False otherwise
"""
return self.is_completed
def is_running(self) -> bool:
"""
Check if the process is running
Returns:
True if running, False otherwise
"""
return self.is_running_flag.is_set()
def stop(self) -> None:
"""
Stop the process if it's running
"""
if self.process and self.is_running():
self._add_log("[INFO] Stopping ingestion process")
try:
self.process.terminate()
# Wait 5 seconds for termination
self.process.wait(timeout=5)
except subprocess.TimeoutExpired:
self._add_log("[WARN] Process not responding, forcing termination")
self.process.kill()
finally:
self.is_running_flag.clear()
self.is_completed = True
self._add_log("[INFO] Ingestion process stopped")
def _capture_output(self) -> None:
"""
Capture and process the output from the yourbench process
"""
self._add_log("[INFO] Starting output capture")
try:
while self.is_running() and self.process:
line = self.process.stdout.readline()
if not line:
# If no line is read and the process is no longer running
if self.process.poll() is not None:
self.is_running_flag.clear()
break
# Otherwise, wait a bit and continue
time.sleep(0.1)
continue
# Process the output line
line = line.strip()
if line:
# Log raw output for debugging
self._add_log(f"[DEBUG] Raw output: {line}")
# Filter and format the line as needed
if "ERROR" in line:
self._add_log(f"[ERROR] {line}")
elif "WARNING" in line:
self._add_log(f"[WARN] {line}")
else:
# Detect completed stages
if "Completed stage:" in line:
stage = line.split("'")[1] if "'" in line else line
self._add_log(f"[SUCCESS] Stage completed: {stage}")
else:
self._add_log(f"[INFO] {line}")
# Check exit code once the process is finished
if self.process:
exit_code = self.process.poll()
if exit_code == 0:
self._add_log("[SUCCESS] Ingestion process completed successfully")
else:
self._add_log(f"[ERROR] Ingestion process terminated with error code: {exit_code}")
except Exception as e:
self._add_log(f"[ERROR] Error during output capture: {str(e)}")
finally:
self.is_completed = True
self.is_running_flag.clear()
self._add_log("[INFO] Output capture completed")
def run(self, token: Optional[str] = None) -> None:
"""
Run the ingestion task
Args:
token: Hugging Face token
"""
try:
self._add_log("[INFO] Starting ingestion process")
# Check if the configuration file exists
if not os.path.exists(self.config_path):
raise FileNotFoundError(f"Configuration file does not exist: {self.config_path}")
# Examine the configuration to get information
try:
with open(self.config_path, 'r') as f:
config_yaml = yaml.safe_load(f)
# Get source and destination paths
source_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("source_documents_dir", "")
output_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("output_dir", "")
if source_dir:
self._add_log(f"[INFO] Source directory: {source_dir}")
if output_dir:
self._add_log(f"[INFO] Output directory: {output_dir}")
# List files to process if the directory exists
if source_dir and os.path.exists(source_dir):
files = os.listdir(source_dir)
if files:
self._add_log(f"[INFO] Files to process: {', '.join(files)}")
else:
self._add_log("[WARN] No files found in source directory")
except Exception as e:
self._add_log(f"[WARN] Unable to read configuration: {str(e)}")
# Environment preparation
env = os.environ.copy()
# Explicitly define environment variables for authentication
hf_token = os.getenv("HF_TOKEN")
if hf_token:
# Explicitly export these variables for yourbench
env["HF_TOKEN"] = hf_token
env["HUGGING_FACE_HUB_TOKEN"] = hf_token
env["HF_ORGANIZATION"] = os.getenv("HF_ORGANIZATION", "yourbench")
self._add_log("[INFO] Environment variables HF_TOKEN, HUGGING_FACE_HUB_TOKEN and HF_ORGANIZATION exported")
# In development mode, only simulate ingestion
if os.environ.get("DEVELOPMENT_MODE", "").lower() == "true":
self._add_log("[INFO] Development mode enabled, simulating ingestion")
self._simulate_ingestion_process()
return
# Start the process
self._add_log(f"[INFO] Executing command: {' '.join(self.command)}")
self.process = subprocess.Popen(
self.command,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
universal_newlines=True,
env=env
)
# Mark the process as running
self.is_running_flag.set()
# Start a thread to capture output
output_thread = threading.Thread(target=self._capture_output)
output_thread.daemon = True
output_thread.start()
self._add_log(f"[INFO] Process started with PID: {self.process.pid}")
except Exception as e:
self._add_log(f"[ERROR] Error starting ingestion process: {str(e)}")
self.is_completed = True
def _simulate_ingestion_process(self) -> None:
"""
Simulate the ingestion process for testing/development
This will be removed in production
"""
# This method is just to simulate logs during development
# It will be removed in production
threading.Thread(target=self._simulate_logs).start()
def _simulate_logs(self) -> None:
"""
Simulate logs for testing/development
This will be used when yourbench isn't installed or in development mode
"""
# Log simulation (used when yourbench is not available)
self._add_log("[INFO] Simulation mode enabled (yourbench is not actually running)")
# Get filenames from source directory
source_files = []
try:
with open(self.config_path, 'r') as f:
config_yaml = yaml.safe_load(f)
source_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("source_documents_dir", "")
if source_dir and os.path.exists(source_dir):
source_files = [f for f in os.listdir(source_dir)
if os.path.isfile(os.path.join(source_dir, f))]
except Exception:
source_files = ["document.pdf", "document.txt"] # Fallback
# Create output directory if it doesn't exist
output_dir = ""
try:
output_dir = config_yaml.get("pipeline", {}).get("ingestion", {}).get("output_dir", "")
if output_dir:
os.makedirs(output_dir, exist_ok=True)
except Exception:
pass
# Simulate file processing
time.sleep(1)
self._add_log("[INFO] Initializing document ingestion")
time.sleep(1.5)
self._add_log("[INFO] Loading configuration parameters")
time.sleep(1)
self._add_log("[INFO] Verifying source files")
# Process each file
for file in source_files:
time.sleep(1.5)
self._add_log(f"[INFO] Processing file: {file}")
time.sleep(2)
self._add_log(f"[INFO] Extracting content from {file}")
time.sleep(1.5)
self._add_log(f"[INFO] Converting to markdown: {file}")
# Create a simulated markdown file if an output directory is defined
if output_dir:
base_name = os.path.splitext(file)[0]
output_file = os.path.join(output_dir, f"{base_name}.md")
try:
with open(output_file, 'w') as f:
f.write(f"# {base_name}\n\n")
f.write("This is a markdown document automatically generated by the simulation.\n\n")
f.write("## Section 1\n\n")
f.write("Content of section 1...\n\n")
f.write("## Section 2\n\n")
f.write("Content of section 2...\n\n")
self._add_log(f"[INFO] Markdown file created: {output_file}")
except Exception as e:
self._add_log(f"[ERROR] Error creating markdown file: {str(e)}")
time.sleep(2)
self._add_log("[INFO] Finalizing processing")
time.sleep(1)
self._add_log("[SUCCESS] Stage completed: ingestion")
time.sleep(0.5)
self._add_log("[SUCCESS] Ingestion completed successfully")
# Mark task as completed
self.is_completed = True