demo / backend /tasks /get_available_model_provider.py
tfrere's picture
add url importer | improve yourbench error handling | refactor
c750639
raw
history blame
6.09 kB
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv
# Load environment variables once at the module level
load_dotenv()
# Define preferred providers
PREFERRED_PROVIDERS = ["fireworks-ai","sambanova", "novita"]
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def prioritize_providers(providers):
"""Prioritize preferred providers, keeping all others."""
return sorted(providers, key=lambda provider: provider not in PREFERRED_PROVIDERS)
def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
"""
Test if a specific provider is available for a model using InferenceClient
Args:
model_name: Name of the model
provider: Provider to test
verbose: Whether to log detailed information
Returns:
True if the provider is available, False otherwise
"""
try:
# Get HF token from environment
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN not defined in environment")
# Get HF token from environment
hf_organization = os.environ.get("HF_ORGANIZATION")
if not hf_organization:
raise ValueError("HF_ORGANIZATION not defined in environment")
if verbose:
logger.info(f"Testing provider {provider} for model {model_name}")
# Initialize the InferenceClient with the specific provider
client = InferenceClient(
model=model_name,
token=hf_token,
provider=provider,
# bill_to=hf_organization,
timeout=10 # Increased timeout to allow model loading
)
try:
# Use the chat completions method for testing
response = client.chat_completion(
messages=[{"role": "user", "content": "Hello"}],
max_tokens=5
)
if verbose:
logger.info(f"Provider {provider} is available for {model_name}")
return True
except Exception as e:
if verbose:
error_message = str(e)
logger.warning(f"Error with provider {provider}: {error_message}")
# Log specific error types if we can identify them
if "status_code=429" in error_message:
logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
elif "status_code=401" in error_message:
logger.warning(f"Authentication failed for provider {provider}. Check your token.")
elif "status_code=503" in error_message:
logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
elif "timed out" in error_message.lower():
logger.warning(f"Timeout error with provider {provider} - request timed out after 10 seconds")
return False
except Exception as e:
if verbose:
logger.warning(f"Error in test_provider: {str(e)}")
return False
def get_available_model_provider(model_name, verbose=False):
"""
Get the first available provider for a given model.
Args:
model_name: Name of the model on the Hub
verbose: Whether to log detailed information
Returns:
First available provider or None if none are available
"""
try:
# Get HF token from environment
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN not defined in environment")
# Get providers for the model and prioritize them
info = model_info(model_name, expand="inferenceProviderMapping")
if not hasattr(info, "inference_provider_mapping"):
if verbose:
logger.info(f"No inference providers found for {model_name}")
return None
providers = list(info.inference_provider_mapping.keys())
if not providers:
if verbose:
logger.info(f"Empty list of providers for {model_name}")
return None
# Prioritize providers
providers = prioritize_providers(providers)
if verbose:
logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
# Test each provider
for provider in providers:
if test_provider(model_name, provider, verbose):
return provider
# If we've tried all providers and none worked, log this but don't raise an exception
if verbose:
logger.error(f"No available providers for {model_name}")
return None
except Exception as e:
if verbose:
logger.error(f"Error in get_available_model_provider: {str(e)}")
return None
if __name__ == "__main__":
models = [
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"mistralai/Mistral-Small-24B-Instruct-2501",
"meta-llama/Llama-3.1-8B-Instruct",
"Qwen/Qwen2.5-32B-Instruct"
]
providers = []
unavailable_models = []
for model in models:
provider = get_available_model_provider(model, verbose=True)
if provider:
providers.append((model, provider))
else:
unavailable_models.append(model)
for model, provider in providers:
print(f"Model: {model}, Provider: {provider}")
if unavailable_models:
print(f"Models with no available providers: {', '.join(unavailable_models)}")
print(f"Total Providers {len(providers)}: {providers}")