Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
""" | |
Task to run evaluation using lighteval | |
""" | |
import os | |
import time | |
import subprocess | |
import tempfile | |
from pathlib import Path | |
import concurrent.futures | |
from dotenv import load_dotenv | |
from datetime import datetime | |
import json | |
import shutil | |
from typing import List, Dict | |
from tasks.get_available_model_provider import get_available_model_provider | |
from huggingface_hub import HfApi | |
import asyncio | |
# Valeur par défaut du timeout | |
DEFAULT_EVALUATION_TIMEOUT = 120.0 # 1 minute par défaut | |
class EvaluationTask: | |
""" | |
Task to run evaluation using lighteval | |
""" | |
def __init__(self, session_uid: str, dataset_name: str, clean_old_results: bool = False, timeout: float = None): | |
""" | |
Initialize the evaluation task | |
Args: | |
session_uid: Session ID for this task | |
dataset_name: Name of the dataset to evaluate | |
clean_old_results: If True, clean old results before evaluation | |
timeout: Timeout in seconds for each model evaluation (if None, uses default) | |
""" | |
self.session_uid = session_uid | |
self.dataset_name = dataset_name | |
self.is_completed = False | |
self.results = [] | |
self.hf_api = HfApi() | |
self.timeout = timeout if timeout is not None else DEFAULT_EVALUATION_TIMEOUT | |
self.current_step = "initializing" | |
self.completed_steps = [] | |
self.step_start_time = time.time() # Enregistrer le temps de début de l'étape actuelle | |
# Nettoyer les anciens résultats si demandé | |
if clean_old_results: | |
self.clean_old_results() | |
async def update_step(self, step: str) -> None: | |
""" | |
Update the current step and completed steps with a minimum delay of 1 second | |
Args: | |
step: Name of the step to update | |
""" | |
# Calculer le temps écoulé depuis le début de l'étape précédente | |
elapsed_since_step_start = time.time() - self.step_start_time | |
# Si moins d'une seconde s'est écoulée, attendre pour compléter la seconde | |
if elapsed_since_step_start < 1.0: | |
await asyncio.sleep(1.0 - elapsed_since_step_start) | |
# Mettre à jour l'étape courante et enregistrer le nouvel horodatage | |
self.current_step = step | |
self.step_start_time = time.time() | |
# Ajouter aux étapes complétées si nécessaire | |
if step not in self.completed_steps: | |
self.completed_steps.append(step) | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Step changed to: {step}") | |
def get_progress(self) -> Dict: | |
""" | |
Get the current progress of the task | |
Returns: | |
Dictionary containing current step and completed steps | |
""" | |
return { | |
"current_step": self.current_step, | |
"completed_steps": self.completed_steps | |
} | |
def clean_old_results(self) -> None: | |
""" | |
Clean old evaluation results to avoid confusion | |
""" | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Checking and cleaning old results...") | |
# Path to LightEval results | |
results_dir = Path(f"uploaded_files/{self.session_uid}/lighteval_results") | |
# Delete if exists | |
if results_dir.exists(): | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Deleting old LightEval results") | |
shutil.rmtree(results_dir) | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Cleaning complete") | |
else: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] No old results found") | |
# Also check for intermediate lighteval results | |
if os.path.exists("data/lighteval_results"): | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Cleaning intermediate results") | |
try: | |
shutil.rmtree("data/lighteval_results", ignore_errors=True) | |
except Exception as e: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Error cleaning intermediate results: {str(e)}") | |
def _save_results_to_hub(self) -> None: | |
""" | |
Save evaluation results directly to the dataset on the Hub without persisting locally | |
""" | |
try: | |
# Trier les résultats par précision (du plus précis au moins précis) | |
sorted_results = sorted(self.results, key=lambda x: x.get('accuracy', 0), reverse=True) | |
# Créer un fichier temporaire pour les résultats | |
with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp_file: | |
# Ajouter metadata aux résultats | |
final_results = { | |
"metadata": { | |
"evaluation_date": datetime.now().isoformat(), | |
"session_id": self.session_uid, | |
"dataset_name": self.dataset_name | |
}, | |
"results": sorted_results | |
} | |
json.dump(final_results, temp_file, indent=2) | |
temp_file_path = temp_file.name | |
# Push to Hub | |
self.hf_api.upload_file( | |
path_or_fileobj=temp_file_path, | |
path_in_repo="lighteval_results.json", | |
repo_id=self.dataset_name, | |
repo_type="dataset", | |
commit_message="Add lighteval evaluation results" | |
) | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Results saved to Hub at {self.dataset_name}/lighteval_results.json") | |
# Supprimer le fichier temporaire | |
os.unlink(temp_file_path) | |
except Exception as e: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Failed to save results to Hub: {str(e)}") | |
async def _run_lighteval(self, model_name: str, provider: str) -> dict: | |
start_time = time.time() | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Starting evaluation with {provider} provider for {model_name}") | |
# Create temporary task file | |
temp_file_path = tempfile.mktemp(suffix=".py") | |
with open(temp_file_path, 'w') as temp_file: | |
temp_file.write(f""" | |
from lighteval_task.lighteval_task import create_yourbench_task | |
# Create yourbench task | |
yourbench = create_yourbench_task("{self.dataset_name}", "single_shot_questions") | |
# Define TASKS_TABLE needed by lighteval | |
TASKS_TABLE = [yourbench] | |
""") | |
# Create output directory in the session folder | |
output_dir = f"uploaded_files/{self.session_uid}/lighteval_results" | |
os.makedirs(output_dir, exist_ok=True) | |
# LightEval command | |
cmd_args = [ | |
"lighteval", | |
"endpoint", | |
"inference-providers", | |
f"model={model_name},provider={provider}", | |
"custom|yourbench|0|0", | |
"--custom-tasks", | |
temp_file_path, | |
"--max-samples", "30", | |
"--output-dir", output_dir, | |
"--save-details", | |
"--no-push-to-hub" | |
] | |
try: | |
# Run the command with environment variables and increased timeout of 300 seconds | |
process = await asyncio.create_subprocess_exec( | |
*cmd_args, | |
env=os.environ, | |
stdout=asyncio.subprocess.PIPE, | |
stderr=asyncio.subprocess.PIPE | |
) | |
try: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Running command: {' '.join(cmd_args)}") | |
stdout, stderr = await asyncio.wait_for(process.communicate(), timeout=self.timeout) | |
# Log stdout and stderr | |
if stdout: | |
stdout_decoded = stdout.decode('utf-8') | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] LightEval STDOUT for {model_name}:") | |
for line in stdout_decoded.splitlines(): | |
print(f"[STDOUT] {line}") | |
if stderr: | |
stderr_decoded = stderr.decode('utf-8') | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] LightEval STDERR for {model_name}:") | |
for line in stderr_decoded.splitlines(): | |
print(f"[STDERR] {line}") | |
# Check return code | |
if process.returncode != 0: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] LightEval failed with return code {process.returncode}") | |
except asyncio.TimeoutError: | |
process.kill() | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Evaluation timed out for {model_name} after {time.time() - start_time:.2f}s") | |
# Clean up temporary files | |
os.unlink(temp_file_path) | |
return { | |
"model": model_name, | |
"provider": provider, | |
"accuracy": 0.0, | |
"execution_time": self.timeout, | |
"status": "timeout" | |
} | |
except Exception as e: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Error running evaluation for {model_name}: {str(e)}") | |
# Clean up temporary files | |
os.unlink(temp_file_path) | |
return { | |
"model": model_name, | |
"provider": provider, | |
"accuracy": 0.0, | |
"execution_time": time.time() - start_time, | |
"status": "error" | |
} | |
# Calculate execution time | |
execution_time = time.time() - start_time | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Finished evaluation for {model_name} in {execution_time:.2f}s") | |
try: | |
# Get results from the output file | |
results_dir = Path(output_dir) / "results" / model_name.replace("/", "/") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Looking for results in {results_dir}") | |
if not results_dir.exists(): | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Results directory doesn't exist for {model_name}") | |
raise FileNotFoundError(f"Results directory not found: {results_dir}") | |
results_files = list(results_dir.glob("results_*.json")) | |
if not results_files: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] No results files found in {results_dir}") | |
raise FileNotFoundError(f"No results files found in {results_dir}") | |
results_file = results_files[0] | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Using results file: {results_file}") | |
with open(results_file) as f: | |
results = json.load(f) | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Results structure: {json.dumps(list(results.keys()))}") | |
# Vérifier que la structure est celle attendue | |
if "results" in results and "all" in results["results"] and "accuracy" in results["results"]["all"]: | |
accuracy = results["results"]["all"]["accuracy"] | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Extracted accuracy: {accuracy}") | |
else: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Structure de résultats inattendue. Clés disponibles: {list(results.keys())}") | |
if "results" in results: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Clés dans 'results': {list(results['results'].keys()) if isinstance(results['results'], dict) else 'pas un dictionnaire'}") | |
raise ValueError(f"Structure de résultats inattendue pour {model_name}") | |
result_data = { | |
"model": model_name, | |
"provider": provider, | |
"accuracy": accuracy, | |
"execution_time": execution_time, | |
"status": "success" | |
} | |
except Exception as e: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Failed to parse results for {model_name} after {execution_time:.2f}s: {str(e)}") | |
result_data = { | |
"model": model_name, | |
"provider": provider, | |
"accuracy": 0.0, | |
"execution_time": execution_time, | |
"status": "parse_error" | |
} | |
# Clean up temporary files | |
os.unlink(temp_file_path) | |
return result_data | |
async def run(self, clean_first: bool = True) -> None: | |
""" | |
Run the evaluation task asynchronously | |
Args: | |
clean_first: If True, clean old results before starting (default: True) | |
""" | |
# Systematically clean old results before starting | |
self.clean_old_results() | |
# Start global timer | |
script_start_time = time.time() | |
# Load environment variables | |
load_dotenv() | |
# Models to evaluate - uniquement les modèles accessibles | |
models = [ | |
"Qwen/QwQ-32B", | |
"Qwen/Qwen2.5-72B-Instruct", | |
"Qwen/Qwen2.5-32B-Instruct", | |
"meta-llama/Llama-3.1-8B-Instruct", | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B", | |
"mistralai/Mistral-Small-24B-Instruct-2501", | |
] | |
# Log pour voir la structure du dataset | |
try: | |
from datasets import load_dataset | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Tentative de chargement du dataset {self.dataset_name} pour inspection") | |
dataset = load_dataset(self.dataset_name, "single_shot_questions", split="train") | |
# Vérifier la structure du premier exemple | |
if len(dataset) > 0: | |
first_example = dataset[0] | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Structure du premier exemple:") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Clés: {first_example.keys()}") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Citations: {first_example.get('citations', 'non trouvé')}") | |
except Exception as e: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Erreur lors de l'inspection du dataset: {str(e)}") | |
# Step 1: Check available providers for each model | |
await self.update_step("finding_available_model_providers") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Checking available providers for models...") | |
model_providers = {} | |
for model in models: | |
provider = get_available_model_provider(model, verbose=True) | |
if provider: | |
model_providers[model] = provider | |
else: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] No available provider found for {model}") | |
if not model_providers: | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] No models with available providers found") | |
return | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Found providers for {len(model_providers)} models") | |
# Step 2: Run evaluations in parallel | |
await self.update_step("starting_evaluation_process") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Starting evaluation process...") | |
# Step 3: Evaluate models | |
await self.update_step("evaluating_models") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Evaluating models...") | |
tasks = [] | |
for model, provider in model_providers.items(): | |
tasks.append(self._run_lighteval(model, provider)) | |
# Run all evaluations in parallel | |
results = await asyncio.gather(*tasks) | |
# Filter out failed evaluations | |
self.results = [r for r in results if r["status"] == "success"] | |
# Step 4: Save results | |
await self.update_step("storing_evaluation_results") | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Storing evaluation results...") | |
self._save_results_to_hub() | |
# Mark task as completed | |
self.is_completed = True | |
await self.update_step("completed") | |
total_time = time.time() - script_start_time | |
print(f"[{datetime.now().strftime('%H:%M:%S')}] Evaluation completed in {total_time:.2f}s") | |
def get_logs(self) -> List[str]: | |
""" | |
Get the logs of the task | |
Returns: | |
List of log messages | |
""" | |
return self.logs if hasattr(self, "logs") else [] | |
def is_task_completed(self) -> bool: | |
""" | |
Check if the task is completed | |
Returns: | |
True if the task is completed, False otherwise | |
""" | |
return self.is_completed |