Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import pandas as pd | |
import sys | |
from pprint import pprint | |
import numpy as np | |
# Chemin vers le fichier parquet | |
parquet_file = "data/lighteval_results/details/Qwen/Qwen2.5-72B-Instruct/2025-04-01T13-30-41.628107/details_custom|yourbench|0_2025-04-01T13-30-41.628107.parquet" | |
# Charger le fichier parquet | |
df = pd.read_parquet(parquet_file) | |
# Afficher des informations de base | |
print(f"Nombre total d'exemples: {len(df)}") | |
print(f"Colonnes disponibles: {', '.join(df.columns)}") | |
print(f"Métriques d'accuracy: {df['metrics'].tolist()}") | |
print("\n" + "="*80 + "\n") | |
# Examiner quelques exemples plus en détail | |
for i in range(min(3, len(df))): | |
print(f"EXEMPLE {i+1}:") | |
print(f"Question: {df.iloc[i].specifics.get('question', 'N/A')}") | |
print(f"Réponse du modèle: {df.iloc[i].predictions[0]}") | |
print(f"Réponse de référence (choice): {df.iloc[i].choices[0]}") | |
print(f"Gold index: {df.iloc[i].gold_index}") | |
# Afficher le document | |
print("\nDocument:") | |
doc = df.iloc[i].specifics.get('document', 'N/A') | |
print(doc[:500] + "..." if len(doc) > 500 else doc) | |
# Afficher les chunks | |
print("\nChunks:") | |
chunks = df.iloc[i].specifics.get('chunks', None) | |
if chunks is not None and len(chunks) > 0: | |
for j in range(len(chunks)): | |
chunk_text = chunks[j] | |
if isinstance(chunk_text, str): | |
print(f" Chunk {j+1}: {chunk_text[:300]}..." if len(chunk_text) > 300 else f" Chunk {j+1}: {chunk_text}") | |
else: | |
print(f" Chunk {j+1}: {type(chunk_text)}") | |
else: | |
print(" Aucun chunk disponible") | |
# Afficher d'autres métadonnées | |
print("\nMétadonnées:") | |
print(f" Catégorie de question: {df.iloc[i].specifics.get('question_category', 'N/A')}") | |
print(f" Difficulté estimée: {df.iloc[i].specifics.get('estimated_difficulty', 'N/A')}") | |
print(f" Modèle générateur de question: {df.iloc[i].specifics.get('question_generating_model', 'N/A')}") | |
print("\n" + "="*80 + "\n") |