Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,608 Bytes
39acd70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
#!/usr/bin/env python
"""
Script to benchmark the performance of different providers for a given model.
Usage: python model_provider_benchmark.py [--model "model_name"] [--output results.json] [--questions 5]
"""
import argparse
import json
import time
import os
import requests
from typing import List, Dict, Any, Tuple, Optional
import logging
from datetime import datetime
from dotenv import load_dotenv
from huggingface_hub import model_info
# Logging configuration
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger("provider_benchmark")
# Default models to test
DEFAULT_MODELS = [
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
"Qwen/QwQ-32B",
"mistralai/Mistral-Small-24B-Instruct-2501"
]
# Questions to benchmark the models
DEFAULT_QUESTIONS = [
"What are the key benefits of using distributed systems?",
"Explain the concept of quantum computing in simple terms.",
"What are the ethical considerations in artificial intelligence?",
"Compare and contrast supervised and unsupervised learning.",
"How does blockchain technology ensure security and transparency?"
]
def get_model_providers(model_name: str) -> List[str]:
"""
Gets all available providers for a given model.
Args:
model_name: Name of the model on the Hub
Returns:
List of available providers
"""
try:
info = model_info(model_name, expand="inferenceProviderMapping")
if hasattr(info, "inference_provider_mapping"):
providers = list(info.inference_provider_mapping.keys())
return providers
else:
logger.warning(f"No providers available for {model_name}")
return []
except Exception as e:
logger.error(f"Error while retrieving providers for {model_name}: {e}")
return []
def query_model(
model: str,
provider: str,
prompt: str,
token: str
) -> Tuple[str, float]:
"""
Sends a request to a model via the Inference Endpoints API.
Args:
model: Model name
provider: Provider name
prompt: Question to ask
token: HF token for authentication
Returns:
Tuple containing the response and execution time
"""
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": 100,
"temperature": 0.7,
"top_p": 0.9,
"do_sample": True,
"provider": provider # Add provider in the parameters
}
}
# Build the Inference API URL without provider parameter
api_url = f"https://api-inference.huggingface.co/models/{model}"
start_time = time.time()
try:
# Add a small delay between requests to avoid rate limiting
time.sleep(0.5)
response = requests.post(api_url, headers=headers, json=payload)
# Check for specific error cases
if response.status_code != 200:
try:
error_data = response.json()
error_msg = error_data.get("error", str(error_data))
except:
error_msg = response.text
logger.error(f"Error for {model} ({provider}): {error_msg}")
return f"ERROR: {error_msg}", 0
response.raise_for_status()
result = response.json()
# API can return different formats, let's try to normalize
if isinstance(result, list) and len(result) > 0:
if "generated_text" in result[0]:
answer = result[0]["generated_text"]
else:
answer = str(result)
elif isinstance(result, dict):
if "generated_text" in result:
answer = result["generated_text"]
else:
answer = str(result)
else:
answer = str(result)
except requests.exceptions.RequestException as e:
error_msg = str(e)
logger.error(f"Error for {model} ({provider}): {error_msg}")
return f"ERROR: {error_msg}", 0
except Exception as e:
error_msg = str(e)
logger.error(f"Error for {model} ({provider}): {error_msg}")
return f"ERROR: {error_msg}", 0
end_time = time.time()
execution_time = end_time - start_time
return answer, execution_time
def run_benchmark(
model: str,
questions: List[str] = DEFAULT_QUESTIONS,
output_file: str = None
) -> Optional[List[Dict[str, Any]]]:
"""
Runs a benchmark for all model/provider combinations.
Args:
model: Name of the model to test
questions: List of questions to ask
output_file: Path to the output JSON file (optional)
Returns:
List of ranked providers or None in case of error
"""
# Load environment variables
load_dotenv()
# Get HF token (without reading directly from .env file)
hf_token = os.environ.get("HF_TOKEN")
if not hf_token:
logger.error("HF_TOKEN not defined")
return None
# Get all available providers for this model
providers = get_model_providers(model)
if not providers:
logger.warning(f"No providers for {model}")
return None
logger.info(f"Testing {model} with providers: {', '.join(providers)}")
# Structure to store results
results = {
"providers": {}
}
# Test each provider
for provider in providers:
logger.info(f"Provider: {provider}")
provider_results = {
"questions": [],
"total_time": 0,
"average_time": 0,
"success_rate": 0
}
successful_queries = 0
total_time = 0
# Ask each question
for i, question in enumerate(questions):
answer, execution_time = query_model(
model=model,
provider=provider,
prompt=question,
token=hf_token
)
# Check if the request was successful
is_error = answer.startswith("ERROR:")
if not is_error:
successful_queries += 1
total_time += execution_time
# Save results for this question
provider_results["questions"].append({
"question": question,
"time": execution_time,
"success": not is_error,
"answer": answer[:100] + "..." if len(answer) > 100 else answer
})
# Calculate global metrics
provider_results["total_time"] = total_time
provider_results["average_time"] = total_time / successful_queries if successful_queries > 0 else 0
provider_results["success_rate"] = successful_queries / len(questions)
# Add results for this provider
results["providers"][provider] = provider_results
# Check if at least one provider succeeded
if not any(data["success_rate"] > 0 for data in results["providers"].values()):
logger.warning(f"No successful providers for {model}")
return None
# Create a ranked list of providers
sorted_providers = sorted(
results["providers"].items(),
key=lambda x: x[1]["total_time"] if x[1]["success_rate"] > 0 else float('inf')
)
# Return only the ranked list of providers
return [
{
"provider": provider,
"total_time": data["total_time"],
"success_rate": data["success_rate"],
"average_time": data["average_time"]
}
for provider, data in sorted_providers
]
def display_results(model: str, results: List[Dict[str, Any]]) -> None:
"""
Displays benchmark results in a readable format.
Args:
model: Model name
results: List of ranked providers
"""
print(f"\n===== Benchmark Results for {model} =====")
print(f"Number of providers tested: {len(results)}")
print("\nProvider Rankings (fastest to slowest):")
print("-" * 80)
print(f"{'Rank':<6} {'Provider':<20} {'Success Rate':<15} {'Total Time (s)':<20} {'Avg Time (s)':<15}")
print("-" * 80)
for i, provider_data in enumerate(results, 1):
print(f"{i:<6} {provider_data['provider']:<20} {provider_data['success_rate']*100:>6.1f}% {provider_data['total_time']:>8.2f}s {provider_data['average_time']:>6.2f}s")
def calculate_model_rankings(all_results: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
Calculates model rankings based on their performance.
Args:
all_results: Complete benchmark results
Returns:
List of models ranked by performance
"""
model_rankings = []
for model_name, results in all_results["models"].items():
if results is None:
continue
# Find the fastest provider with a good success rate
best_provider = None
best_time = float('inf')
best_success_rate = 0
for provider_data in results:
if provider_data["success_rate"] >= 0.8: # Only consider providers with at least 80% success rate
if provider_data["total_time"] < best_time:
best_time = provider_data["total_time"]
best_success_rate = provider_data["success_rate"]
best_provider = provider_data["provider"]
if best_provider:
model_rankings.append({
"model": model_name,
"best_provider": best_provider,
"total_time": best_time,
"success_rate": best_success_rate,
"average_time": best_time / 5 # 5 questions by default
})
# Sort by total time (fastest first)
return sorted(model_rankings, key=lambda x: x["total_time"])
def display_final_rankings(model_rankings: List[Dict[str, Any]]) -> None:
"""
Displays the final model rankings.
Args:
model_rankings: List of ranked models
"""
print("\n" + "="*80)
print("FINAL MODEL RANKINGS (fastest to slowest)")
print("="*80)
print(f"{'Rank':<6} {'Model':<40} {'Provider':<20} {'Total Time (s)':<15} {'Success Rate':<15}")
print("-"*80)
for i, model_data in enumerate(model_rankings, 1):
print(f"{i:<6} {model_data['model']:<40} {model_data['best_provider']:<20} "
f"{model_data['total_time']:>8.2f}s {model_data['success_rate']*100:>6.1f}%")
def display_final_summary(all_results: Dict[str, Any]) -> None:
"""
Displays a final summary with ranked providers for each model.
Args:
all_results: Complete benchmark results
"""
print("\n" + "="*100)
print("FINAL SUMMARY OF PROVIDERS BY MODEL")
print("="*100)
for model_name, results in all_results["models"].items():
if results is None:
print(f"\n{model_name}:")
print(" No successful providers found")
continue
print(f"\n{model_name}:")
print(" Successful providers:")
for provider_data in results:
if provider_data["success_rate"] > 0:
print(f" - {provider_data['provider']} (Success rate: {provider_data['success_rate']*100:.1f}%, Avg time: {provider_data['average_time']:.2f}s)")
# Check for failed providers
failed_providers = [p for p in results if p["success_rate"] == 0]
if failed_providers:
print(" Failed providers:")
for provider_data in failed_providers:
print(f" - {provider_data['provider']}")
def main():
"""
Main entry point for the script.
"""
parser = argparse.ArgumentParser(description="Tests the performance of model providers.")
parser.add_argument("--model", type=str, help="Name of the model to test (if not specified, all default models will be tested)")
parser.add_argument("--output", type=str, default="benchmark_results.json", help="Path to the output JSON file")
parser.add_argument("--questions", type=int, default=5, help="Number of questions to ask (default: 5)")
args = parser.parse_args()
# Limit the number of questions to the maximum available
num_questions = min(args.questions, len(DEFAULT_QUESTIONS))
questions = DEFAULT_QUESTIONS[:num_questions]
# Determine which models to test
models_to_test = [args.model] if args.model else DEFAULT_MODELS
# Structure to store all results
all_results = {
"timestamp": datetime.now().isoformat(),
"models": {}
}
# Test each model
for model in models_to_test:
logger.info(f"\nModel: {model}")
results = run_benchmark(
model=model,
questions=questions,
output_file=None # We don't save individually
)
all_results["models"][model] = results
# Save all results
with open(args.output, "w") as f:
json.dump(all_results, f, indent=2)
logger.info(f"\nResults saved to {args.output}")
# Display only the final summary
display_final_summary(all_results)
if __name__ == "__main__":
main() |