File size: 11,084 Bytes
970eef1
2a8ebbd
970eef1
 
 
2a8ebbd
970eef1
 
2a8ebbd
 
 
 
39acd70
2a8ebbd
 
 
d6b6619
970eef1
a8a8975
 
39acd70
970eef1
 
2a8ebbd
970eef1
 
a8a8975
970eef1
 
 
 
 
 
39acd70
a8a8975
970eef1
 
 
 
2a8ebbd
 
a8a8975
39acd70
 
 
 
 
 
 
d6f0b38
39acd70
d6f0b38
39acd70
d6f0b38
39acd70
 
d6f0b38
39acd70
d6f0b38
39acd70
d6f0b38
39acd70
d6f0b38
39acd70
d6f0b38
39acd70
d6f0b38
39acd70
 
 
d6f0b38
2a8ebbd
 
970eef1
83d60af
970eef1
2a8ebbd
39acd70
 
 
83d60af
 
39acd70
 
 
 
 
 
 
 
 
 
 
83d60af
2a8ebbd
 
 
83d60af
2a8ebbd
 
 
 
 
970eef1
2a8ebbd
83d60af
 
 
2a8ebbd
 
 
a8a8975
2a8ebbd
 
970eef1
2a8ebbd
970eef1
 
 
2a8ebbd
970eef1
 
a8a8975
970eef1
 
 
 
2a8ebbd
39acd70
 
 
83d60af
2a8ebbd
970eef1
 
2a8ebbd
970eef1
 
 
 
 
f8ec36f
39acd70
 
970eef1
 
2a8ebbd
970eef1
d6b6619
 
 
 
 
 
 
 
 
a8a8975
d6b6619
 
 
83d60af
39acd70
83d60af
 
d6b6619
 
 
 
a8a8975
d6b6619
 
 
 
83d60af
39acd70
83d60af
 
2a8ebbd
 
 
 
d6b6619
 
2a8ebbd
 
 
 
 
 
 
 
39acd70
2a8ebbd
970eef1
2a8ebbd
 
 
 
83d60af
2a8ebbd
 
 
 
 
 
970eef1
2a8ebbd
83d60af
2a8ebbd
 
 
 
 
 
83d60af
39acd70
83d60af
 
 
2a8ebbd
39acd70
970eef1
d6b6619
39acd70
 
d6f0b38
970eef1
d6f0b38
39acd70
 
2a8ebbd
 
970eef1
2a8ebbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b6619
 
 
 
a8a8975
d6b6619
 
2a8ebbd
 
 
 
970eef1
83d60af
 
 
 
 
 
 
 
 
 
 
2a8ebbd
970eef1
2a8ebbd
 
 
 
970eef1
2a8ebbd
970eef1
 
2a8ebbd
970eef1
2a8ebbd
 
 
970eef1
2a8ebbd
970eef1
 
2a8ebbd
970eef1
d6b6619
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""
Task to run evaluation using lighteval
"""
import os
import time
import subprocess
import tempfile
from pathlib import Path
import concurrent.futures
from dotenv import load_dotenv
from datetime import datetime
import json
import shutil
from typing import List, Dict
from tasks.get_model_providers import get_model_providers
from huggingface_hub import HfApi
import asyncio

# Valeur par défaut du timeout
DEFAULT_EVALUATION_TIMEOUT = 60.0  # 1 minute par défaut

class EvaluationTask:
    """
    Task to run evaluation using lighteval
    """

    def __init__(self, session_uid: str, dataset_name: str, clean_old_results: bool = False, timeout: float = None):
        """
        Initialize the evaluation task
        
        Args:
            session_uid: Session ID for this task
            dataset_name: Name of the dataset to evaluate
            clean_old_results: If True, clean old results before evaluation
            timeout: Timeout in seconds for each model evaluation (if None, uses default)
        """
        self.session_uid = session_uid
        self.dataset_name = dataset_name
        self.is_completed = False
        self.results = []
        self.hf_api = HfApi()
        self.timeout = timeout if timeout is not None else DEFAULT_EVALUATION_TIMEOUT
        
        # Nettoyer les anciens résultats si demandé
        if clean_old_results:
            self.clean_old_results()

    def clean_old_results(self) -> None:
        """
        Clean old evaluation results to avoid confusion
        """
        print(f"[{datetime.now().strftime('%H:%M:%S')}] Checking and cleaning old results...")
        
        # Path to LightEval results
        results_dir = Path(f"uploaded_files/{self.session_uid}/lighteval_results")
        
        # Delete if exists
        if results_dir.exists():
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Deleting old LightEval results")
            shutil.rmtree(results_dir)
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Cleaning complete")
        else:
            print(f"[{datetime.now().strftime('%H:%M:%S')}] No old results found")
            
        # Also check for intermediate lighteval results
        if os.path.exists("data/lighteval_results"):
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Cleaning intermediate results")
            try:
                shutil.rmtree("data/lighteval_results", ignore_errors=True)
            except Exception as e:
                print(f"[{datetime.now().strftime('%H:%M:%S')}] Error cleaning intermediate results: {str(e)}")

    def _save_results_to_hub(self) -> None:
        """
        Save evaluation results directly to the dataset on the Hub without persisting locally
        """
        try:
            # Trier les résultats par précision (du plus précis au moins précis)
            sorted_results = sorted(self.results, key=lambda x: x.get('accuracy', 0), reverse=True)
            
            # Créer un fichier temporaire pour les résultats
            with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as temp_file:
                # Ajouter metadata aux résultats
                final_results = {
                    "metadata": {
                        "evaluation_date": datetime.now().isoformat(),
                        "session_id": self.session_uid,
                        "dataset_name": self.dataset_name
                    },
                    "results": sorted_results
                }
                
                json.dump(final_results, temp_file, indent=2)
                temp_file_path = temp_file.name
            
            # Push to Hub
            self.hf_api.upload_file(
                path_or_fileobj=temp_file_path,
                path_in_repo="lighteval_results.json",
                repo_id=self.dataset_name,
                repo_type="dataset",
                commit_message="Add lighteval evaluation results"
            )
            
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Results saved to Hub at {self.dataset_name}/lighteval_results.json")
            
            # Supprimer le fichier temporaire
            os.unlink(temp_file_path)
        except Exception as e:
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Failed to save results to Hub: {str(e)}")

    async def _run_lighteval(self, model_name: str, provider: str) -> dict:
        start_time = time.time()
        print(f"[{datetime.now().strftime('%H:%M:%S')}] Starting evaluation with {provider} provider for {model_name}")
        
        # Create temporary task file
        temp_file_path = tempfile.mktemp(suffix=".py")
        with open(temp_file_path, 'w') as temp_file:
            temp_file.write(f"""
from lighteval_task.lighteval_task import create_yourbench_task

# Create yourbench task
yourbench = create_yourbench_task("{self.dataset_name}", "single_shot_questions")

# Define TASKS_TABLE needed by lighteval
TASKS_TABLE = [yourbench]
""")

        # Create output directory in the session folder
        output_dir = f"uploaded_files/{self.session_uid}/lighteval_results"
        os.makedirs(output_dir, exist_ok=True)

        # LightEval command
        cmd_args = [
            "lighteval",
            "endpoint",
            "inference-providers",
            f"model={model_name},provider={provider}",
            "custom|yourbench|0|0",
            "--custom-tasks",
            temp_file_path,
            "--max-samples", "30",
            "--output-dir", output_dir,
            "--save-details",
            "--no-push-to-hub"
        ]

        try:
            # Run the command with environment variables and increased timeout of 300 seconds
            process = await asyncio.create_subprocess_exec(
                *cmd_args,
                env=os.environ,
                stdout=asyncio.subprocess.PIPE,
                stderr=asyncio.subprocess.PIPE
            )
            
            try:
                await asyncio.wait_for(process.communicate(), timeout=self.timeout)
            except asyncio.TimeoutError:
                process.kill()
                print(f"[{datetime.now().strftime('%H:%M:%S')}] Evaluation timed out for {model_name} after {time.time() - start_time:.2f}s")
                
                # Clean up temporary files
                os.unlink(temp_file_path)
                
                return {
                    "model": model_name,
                    "provider": provider,
                    "accuracy": 0.0,
                    "execution_time": self.timeout,
                    "status": "timeout"
                }
        except Exception as e:
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Error running evaluation for {model_name}: {str(e)}")
            
            # Clean up temporary files
            os.unlink(temp_file_path)
            
            return {
                "model": model_name,
                "provider": provider,
                "accuracy": 0.0,
                "execution_time": time.time() - start_time,
                "status": "error"
            }

        # Calculate execution time
        execution_time = time.time() - start_time
        print(f"[{datetime.now().strftime('%H:%M:%S')}] Finished evaluation for {model_name} in {execution_time:.2f}s")

        try:
            # Get results from the output file
            results_dir = Path(output_dir) / "results" / model_name.replace("/", "/")
            results_file = next(results_dir.glob("results_*.json"))
            
            with open(results_file) as f:
                results = json.load(f)
                accuracy = results["results"]["all"]["accuracy"]

            result_data = {
                "model": model_name,
                "provider": provider,
                "accuracy": accuracy,
                "execution_time": execution_time,
                "status": "success"
            }
        except Exception as e:
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Failed to parse results for {model_name} after {execution_time:.2f}s: {str(e)}")
            result_data = {
                "model": model_name,
                "provider": provider,
                "accuracy": 0.0,
                "execution_time": execution_time,
                "status": "parse_error"
            }
        
        # Clean up temporary files
        os.unlink(temp_file_path)
        
        return result_data

    async def run(self, clean_first: bool = True) -> None:
        """
        Run the evaluation task asynchronously
        
        Args:
            clean_first: If True, clean old results before starting (default: True)
        """
        # Systematically clean old results before starting
        self.clean_old_results()
        
        # Start global timer
        script_start_time = time.time()
        
        # Load environment variables
        load_dotenv()

        # Models to evaluate
        models = [
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "deepseek-ai/DeepSeek-V3-0324",
            "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
        ]

        # Get providers for each model
        model_providers = get_model_providers(models)
        
        print(f"[{datetime.now().strftime('%H:%M:%S')}] Starting parallel evaluations")
        
        # Run evaluations in parallel using asyncio
        tasks = []
        for model_name, providers in model_providers:
            if providers:  # Only run if providers are available
                tasks.append(self._run_lighteval(model_name, providers[0]))
        
        self.results = await asyncio.gather(*tasks)

        # Calculate total script execution time
        total_time = time.time() - script_start_time
        print(f"[{datetime.now().strftime('%H:%M:%S')}] All evaluations completed in {total_time:.2f}s")
        
        # Cleanup intermediate results if they exist
        if os.path.exists("data/lighteval_results"):
            print(f"[{datetime.now().strftime('%H:%M:%S')}] Cleaning up intermediate results")
            try:
                # Recursively delete intermediate results
                import shutil
                shutil.rmtree("data/lighteval_results", ignore_errors=True)
            except Exception as e:
                print(f"[{datetime.now().strftime('%H:%M:%S')}] Warning: Failed to clean up intermediate results: {str(e)}")
        
        # Save final results to Hub (only once)
        self._save_results_to_hub()
        
        # Mark the task as completed
        self.is_completed = True

    def get_logs(self) -> List[str]:
        """
        Get logs for this task (empty list since we don't track logs anymore)
        
        Returns:
            Empty list of logs
        """
        return []

    def is_task_completed(self) -> bool:
        """
        Check if the task is completed
        
        Returns:
            True if completed, False otherwise
        """
        return self.is_completed