Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,652 Bytes
970eef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
#!/usr/bin/env python3
# MIT License
# Copyright (c) 2024 The HuggingFace Team
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import logging
import re
import numpy as np
from aenum import extend_enum
from lighteval.metrics.metrics import Metrics
from lighteval.metrics.metrics_sample import JudgeLLM
from lighteval.metrics.utils.metric_utils import (
CorpusLevelMetricGrouping,
MetricCategory,
MetricUseCase,
)
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
logger = logging.getLogger(__name__)
JUDGE_ANSWER_SYSTEM_PROMPT = """You will be provided with the summary of a document, a piece of text, a question generated from that text, and the correct or "gold" answer to the question. Additionally, you will receive a model answer. Your task is to determine wether the model answer is correct using the provided "gold" answer as a reference.
# Steps
1. **Document Understanding**:
- Analyze the provided document summary to grasp the context and main themes.
2. **Chunk Understanding**:
- Examine the provided text (chunk) to understand its content.
3. **Question Understanding**:
- Interpret the given question to fully comprehend what is being asked.
4. **Ground Truth Answer Understanding**:
- Understand the provided ground truth answer, identifying its key points.
6. **Answer Understanding**:
- Examine the Model Answer, identifying key points and assessing accuracy and factuality.
7. **Final Answer**:
- 0 or 1 (0 if the model answer is incorrect, 1 if it is correct).
# Output Format
- Provide your final evaluation of whether the answer is correct within `<final_answer>` XML tags.
- Include a detailed analysis for each part within the designated XML tags: `<document_understanding>`, `<chunk_understanding>`, `<question_understanding>`, `<ground_truth_answer_understanding>`, `<model_answer_understanding>`, and `<final_answer>`.
# Examples
**Input**:
```xml
<document_summary>
[Summary]
</document_summary>
<piece_of_text>
[Text]
</piece_of_text>
<question>
[Question]
</question>
<gold_answer>
[Gold Answer]
</gold_answer>
<model_answer>
[Model Answer]
</model_answer>
```
**Output**:
```xml
<document_understanding>
Understanding of the summary including key themes
</document_understanding>
<chunk_understanding>
Analysis of the piece of text
</chunk_understanding>
<question_understanding>
Comprehension of the question being asked
</question_understanding>
<ground_truth_answer_understanding>
Key points from the gold answer
</ground_truth_answer_understanding>
<model_answer_understanding>
Key points and accuracy of Answer A
</model_answer_understanding>
<final_answer>
1 or 0 (1 if the model answer is correct, 0 if it is incorrect)
</final_answer>
```
# Notes
- Always focus on key points and factual correctness as per the ground truth.
- Avoid any biases and rely solely on the evidence presented.
- Enclose all evaluations and analyses in the specified XML tags for clarity and structure."""
JUDGE_ANSWER_USER_PROMPT = """<document_summary>
{summary}
</document_summary>
<piece_of_text>
{chunk}
</piece_of_text>
<question>
{question}
</question>
<gold_answer>
{oracle_answer}
</gold_answer>
<model_answer>
{model_answer}
</model_answer>"""
def get_judge_prompt(question: str, answer: str, gold: str, **kwargs):
chunk = kwargs.get("chunks", "")
summary = kwargs.get("documents", "")
return [
{"role": "system", "content": JUDGE_ANSWER_SYSTEM_PROMPT},
{
"role": "user",
"content": JUDGE_ANSWER_USER_PROMPT.format(
summary=summary, chunk=chunk, question=question, oracle_answer=gold, model_answer=answer
),
},
]
def process_judge_response_yourbench(response):
# extract the final answer using regex from the response xml
try:
# Essayer d'abord le format XML
match = re.search(r"<final_answer>(.*?)</final_answer>", response, re.DOTALL)
if match:
answer_text = match.group(1).strip()
# Convertir différents formats possibles en 0 ou 1
if answer_text in ["1", "correct", "true", "yes", "True", "TRUE"]:
return 1
elif answer_text in ["0", "incorrect", "false", "no", "False", "FALSE"]:
return 0
# Essayer de convertir directement en nombre
try:
value = int(answer_text)
return 1 if value > 0 else 0
except ValueError:
pass
# Rechercher des mots-clés dans la réponse
if re.search(r"\b(correct|vrai|true|yes)\b", response, re.IGNORECASE):
return 1
if re.search(r"\b(incorrect|faux|false|no)\b", response, re.IGNORECASE):
return 0
logger.warning(f"Réponse du juge non reconnue, retournant 0 par défaut: {response[:100]}...")
except Exception as e:
logger.error(f"Error processing judge response: {e}")
return 0
class JudgeLLMYourBench(JudgeLLM):
def __init__(self):
super().__init__(
judge_model_name="gpt-4o-2024-08-06",
template=get_judge_prompt,
process_judge_response=process_judge_response_yourbench,
judge_backend="openai",
short_judge_name="yourbench_judge",
)
def compute(self, sample_ids: list[str], responses: list, formatted_docs: list[Doc]) -> list[dict[str, float]]:
# If we are evaluating a multiturn task, we need to have specific field in the formatted doc
questions = [formatted_doc.specific["question"] for formatted_doc in formatted_docs]
golds = [formatted_doc.get_golds()[0] for formatted_doc in formatted_docs]
predictions = [response[0].result[0] for response in responses]
options = [None] * len(questions)
chunks = [formatted_doc.specific["chunks"][0] for formatted_doc in formatted_docs]
documents = [formatted_doc.specific["document"] for formatted_doc in formatted_docs]
score, _, _ = self.judge.evaluate_answer_batch(
questions, predictions, options, golds, chunks=chunks, documents=documents
)
metrics = []
for i in range(len(sample_ids)):
metrics.append(
{
"accuracy": score[i],
}
)
return metrics
ZEROSHOT_QA_USER_PROMPT = """Answer the following question:
<question>
{question}
</question>
Enclose your full answer in <answer> XML tags. For example:
<answer>
[your answer here]
</answer>"""
def yourbench_prompt(line, task_name: str = ""):
return Doc(
task_name=task_name,
query=ZEROSHOT_QA_USER_PROMPT.format(question=line["question"]),
choices=[line["ground_truth_answer"]],
gold_index=0,
specific={
"question_category": line["question_category"],
"kind": line["kind"],
"estimated_difficulty": line["estimated_difficulty"],
"document_id": line["document_id"],
"question_generating_model": line["question_generating_model"],
"chunks": line["chunks"],
"question": line["question"],
"document": line["document"],
},
)
def create_yourbench_task(hf_dataset_name, subset="lighteval_single_shot_questions"):
"""
Crée une tâche personnalisée yourbench pour lighteval.
Args:
hf_dataset_name: Nom du dataset sur le Hub HF (format: "org/nom")
subset: Nom du sous-ensemble à utiliser
Returns:
LightevalTaskConfig: Configuration de la tâche yourbench
"""
yourbench_metrics = CorpusLevelMetricGrouping(
metric_name=["accuracy"],
higher_is_better={"accuracy": True},
category=MetricCategory.LLM_AS_JUDGE,
use_case=MetricUseCase.ACCURACY,
sample_level_fn=JudgeLLMYourBench().compute,
corpus_level_fn={"accuracy": np.mean},
)
try:
extend_enum(Metrics, "accuracy", yourbench_metrics)
except Exception:
# L'enum a peut-être déjà été ajouté, on ignore l'erreur
pass
return LightevalTaskConfig(
name="yourbench",
suite=["custom"],
prompt_function=yourbench_prompt,
hf_repo=hf_dataset_name,
hf_subset=subset,
hf_avail_splits=["train"],
evaluation_splits=["train"],
few_shots_split=None,
few_shots_select=None,
generation_size=8192,
metric=[Metrics.accuracy],
stop_sequence=[],
trust_dataset=True,
version=0,
) |