File size: 9,652 Bytes
970eef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python3
# MIT License

# Copyright (c) 2024 The HuggingFace Team

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

import logging
import re

import numpy as np
from aenum import extend_enum

from lighteval.metrics.metrics import Metrics
from lighteval.metrics.metrics_sample import JudgeLLM
from lighteval.metrics.utils.metric_utils import (
    CorpusLevelMetricGrouping,
    MetricCategory,
    MetricUseCase,
)
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc


logger = logging.getLogger(__name__)

JUDGE_ANSWER_SYSTEM_PROMPT = """You will be provided with the summary of a document, a piece of text, a question generated from that text, and the correct or "gold" answer to the question. Additionally, you will receive a model answer. Your task is to determine wether the model answer is correct using the provided "gold" answer as a reference.
# Steps
1. **Document Understanding**:
   - Analyze the provided document summary to grasp the context and main themes.
2. **Chunk Understanding**:
   - Examine the provided text (chunk) to understand its content.
3. **Question Understanding**:
   - Interpret the given question to fully comprehend what is being asked.
4. **Ground Truth Answer Understanding**:
   - Understand the provided ground truth answer, identifying its key points.
6. **Answer Understanding**:
   - Examine the Model Answer, identifying key points and assessing accuracy and factuality.
7. **Final Answer**:
   - 0 or 1 (0 if the model answer is incorrect, 1 if it is correct).
# Output Format
- Provide your final evaluation of whether the answer is correct within `<final_answer>` XML tags.
- Include a detailed analysis for each part within the designated XML tags: `<document_understanding>`, `<chunk_understanding>`, `<question_understanding>`, `<ground_truth_answer_understanding>`, `<model_answer_understanding>`, and `<final_answer>`.
# Examples
**Input**:
```xml
<document_summary>
[Summary]
</document_summary>
<piece_of_text>
[Text]
</piece_of_text>
<question>
[Question]
</question>
<gold_answer>
[Gold Answer]
</gold_answer>
<model_answer>
[Model Answer]
</model_answer>
```
**Output**:
```xml
<document_understanding>
Understanding of the summary including key themes
</document_understanding>
<chunk_understanding>
Analysis of the piece of text
</chunk_understanding>
<question_understanding>
Comprehension of the question being asked
</question_understanding>
<ground_truth_answer_understanding>
Key points from the gold answer
</ground_truth_answer_understanding>
<model_answer_understanding>
Key points and accuracy of Answer A
</model_answer_understanding>
<final_answer>
1 or 0 (1 if the model answer is correct, 0 if it is incorrect)
</final_answer>
```
# Notes
- Always focus on key points and factual correctness as per the ground truth.
- Avoid any biases and rely solely on the evidence presented.
- Enclose all evaluations and analyses in the specified XML tags for clarity and structure."""


JUDGE_ANSWER_USER_PROMPT = """<document_summary>
{summary}
</document_summary>
<piece_of_text>
{chunk}
</piece_of_text>
<question>
{question}
</question>
<gold_answer>
{oracle_answer}
</gold_answer>
<model_answer>
{model_answer}
</model_answer>"""


def get_judge_prompt(question: str, answer: str, gold: str, **kwargs):
    chunk = kwargs.get("chunks", "")
    summary = kwargs.get("documents", "")

    return [
        {"role": "system", "content": JUDGE_ANSWER_SYSTEM_PROMPT},
        {
            "role": "user",
            "content": JUDGE_ANSWER_USER_PROMPT.format(
                summary=summary, chunk=chunk, question=question, oracle_answer=gold, model_answer=answer
            ),
        },
    ]


def process_judge_response_yourbench(response):
    # extract the final answer using regex from the response xml
    try:
        # Essayer d'abord le format XML
        match = re.search(r"<final_answer>(.*?)</final_answer>", response, re.DOTALL)
        if match:
            answer_text = match.group(1).strip()
            # Convertir différents formats possibles en 0 ou 1
            if answer_text in ["1", "correct", "true", "yes", "True", "TRUE"]:
                return 1
            elif answer_text in ["0", "incorrect", "false", "no", "False", "FALSE"]:
                return 0
            # Essayer de convertir directement en nombre
            try:
                value = int(answer_text)
                return 1 if value > 0 else 0
            except ValueError:
                pass
        
        # Rechercher des mots-clés dans la réponse
        if re.search(r"\b(correct|vrai|true|yes)\b", response, re.IGNORECASE):
            return 1
        if re.search(r"\b(incorrect|faux|false|no)\b", response, re.IGNORECASE):
            return 0
            
        logger.warning(f"Réponse du juge non reconnue, retournant 0 par défaut: {response[:100]}...")
    except Exception as e:
        logger.error(f"Error processing judge response: {e}")
    return 0


class JudgeLLMYourBench(JudgeLLM):
    def __init__(self):
        super().__init__(
            judge_model_name="gpt-4o-2024-08-06",
            template=get_judge_prompt,
            process_judge_response=process_judge_response_yourbench,
            judge_backend="openai",
            short_judge_name="yourbench_judge",
        )

    def compute(self, sample_ids: list[str], responses: list, formatted_docs: list[Doc]) -> list[dict[str, float]]:
        # If we are evaluating a multiturn task, we need to have specific field in the formatted doc
        questions = [formatted_doc.specific["question"] for formatted_doc in formatted_docs]
        golds = [formatted_doc.get_golds()[0] for formatted_doc in formatted_docs]
        predictions = [response[0].result[0] for response in responses]
        options = [None] * len(questions)
        chunks = [formatted_doc.specific["chunks"][0] for formatted_doc in formatted_docs]
        documents = [formatted_doc.specific["document"] for formatted_doc in formatted_docs]

        score, _, _ = self.judge.evaluate_answer_batch(
            questions, predictions, options, golds, chunks=chunks, documents=documents
        )

        metrics = []
        for i in range(len(sample_ids)):
            metrics.append(
                {
                    "accuracy": score[i],
                }
            )

        return metrics


ZEROSHOT_QA_USER_PROMPT = """Answer the following question:
<question>
{question}
</question>
Enclose your full answer in <answer> XML tags. For example:
<answer>
[your answer here]
</answer>"""


def yourbench_prompt(line, task_name: str = ""):
    return Doc(
        task_name=task_name,
        query=ZEROSHOT_QA_USER_PROMPT.format(question=line["question"]),
        choices=[line["ground_truth_answer"]],
        gold_index=0,
        specific={
            "question_category": line["question_category"],
            "kind": line["kind"],
            "estimated_difficulty": line["estimated_difficulty"],
            "document_id": line["document_id"],
            "question_generating_model": line["question_generating_model"],
            "chunks": line["chunks"],
            "question": line["question"],
            "document": line["document"],
        },
    )


def create_yourbench_task(hf_dataset_name, subset="lighteval_single_shot_questions"):
    """
    Crée une tâche personnalisée yourbench pour lighteval.
    
    Args:
        hf_dataset_name: Nom du dataset sur le Hub HF (format: "org/nom")
        subset: Nom du sous-ensemble à utiliser
        
    Returns:
        LightevalTaskConfig: Configuration de la tâche yourbench
    """
    yourbench_metrics = CorpusLevelMetricGrouping(
        metric_name=["accuracy"],
        higher_is_better={"accuracy": True},
        category=MetricCategory.LLM_AS_JUDGE,
        use_case=MetricUseCase.ACCURACY,
        sample_level_fn=JudgeLLMYourBench().compute,
        corpus_level_fn={"accuracy": np.mean},
    )
    
    try:
        extend_enum(Metrics, "accuracy", yourbench_metrics)
    except Exception:
        # L'enum a peut-être déjà été ajouté, on ignore l'erreur
        pass
    
    return LightevalTaskConfig(
        name="yourbench",
        suite=["custom"],
        prompt_function=yourbench_prompt,
        hf_repo=hf_dataset_name,
        hf_subset=subset,
        hf_avail_splits=["train"],
        evaluation_splits=["train"],
        few_shots_split=None,
        few_shots_select=None,
        generation_size=8192,
        metric=[Metrics.accuracy],
        stop_sequence=[],
        trust_dataset=True,
        version=0,
    )