Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 18,179 Bytes
970eef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
"""
Task to evaluate models on a YourbBench dataset using LightEval
"""
import os
import sys
import json
import time
import tempfile
import asyncio
import threading
from pathlib import Path
from typing import Optional, List, Dict, Any, Tuple
from loguru import logger
from huggingface_hub import HfApi, CommitOperationAdd
from tasks.yourbench_lighteval_task import create_yourbench_task
class EvaluationTask:
"""
Task to evaluate models using LightEval on a YourbBench dataset
"""
def __init__(self, session_uid: str, dataset_name: str):
"""
Initialize the evaluation task
Args:
session_uid: Session ID for this task
dataset_name: Name of the dataset to evaluate
"""
self.session_uid = session_uid
self.dataset_name = dataset_name
self.logs: List[str] = []
self.is_completed = False
self.organization = os.getenv("HF_ORGANIZATION", "yourbench")
self.results: Dict[str, Any] = {}
self.output_dir = f"uploaded_files/{session_uid}/lighteval_results"
# Models to evaluate - can be modified to allow customization
self.models = [
("Qwen/Qwen2.5-72B-Instruct", "novita"),
("Qwen/QwQ-32B", "novita"),
]
self._add_log("[INFO] Initializing evaluation task")
self._add_log(f"[INFO] Dataset to evaluate: {self.organization}/{dataset_name}")
self._add_log(f"[INFO] Output directory: {self.output_dir}")
def _add_log(self, message: str) -> None:
"""
Add a log message to the logs list
Args:
message: Log message to add
"""
if message not in self.logs: # Avoid duplicates
self.logs.append(message)
# Force copy of the list to avoid reference problems
self.logs = self.logs.copy()
# Record in system logs
logger.info(f"[{self.session_uid}] {message}")
def get_logs(self) -> List[str]:
"""
Get all logs for this task
Returns:
List of log messages
"""
return self.logs.copy() # Retourner une copie pour éviter les problèmes de référence
def is_task_completed(self) -> bool:
"""
Check if the task is completed
Returns:
True if completed, False otherwise
"""
return self.is_completed
async def _evaluate_model(self, model_info: Tuple[str, str]) -> Dict[str, Any]:
"""
Evaluate a specific model
Args:
model_info: Tuple of (model_name, provider)
Returns:
Dictionary with evaluation results
"""
model_name, provider = model_info
self._add_log(f"[INFO] Starting evaluation for {model_name} with {provider}")
# Create output directory
os.makedirs(self.output_dir, exist_ok=True)
# Define full dataset path
dataset_path = f"{self.organization}/{self.dataset_name}"
# Create temporary file
temp_file_path = tempfile.mktemp(suffix=".py")
self._add_log(f"[INFO] Creating temporary file for {model_name}: {temp_file_path}")
with open(temp_file_path, 'w') as temp_file:
temp_file.write(f"""
import os
import sys
sys.path.append("{os.getcwd()}")
from tasks.yourbench_lighteval_task import create_yourbench_task
# Create yourbench task
yourbench = create_yourbench_task("{dataset_path}", "lighteval")
# Define TASKS_TABLE needed by lighteval
TASKS_TABLE = [yourbench]
""")
# Build lighteval command args
cmd_args = [
"lighteval",
"endpoint",
"inference-providers",
f"model={model_name},provider={provider}",
"custom|yourbench|0|0",
"--custom-tasks",
temp_file_path,
"--max-samples", "5",
"--output-dir", self.output_dir,
"--save-details",
"--no-push-to-hub"
]
self._add_log(f"[INFO] Running command for {model_name}: {' '.join(cmd_args)}")
results = {
"model_name": model_name,
"provider": provider,
"success": False,
"error": None,
"results": None,
"return_code": None
}
try:
# Prepare environment with needed tokens
env = os.environ.copy()
hf_token = os.getenv("HF_TOKEN")
if hf_token:
env["HF_TOKEN"] = hf_token
env["HUGGING_FACE_HUB_TOKEN"] = hf_token
env["HF_ORGANIZATION"] = self.organization
# Run the process asynchronously
process = await asyncio.create_subprocess_exec(
*cmd_args,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
env=env
)
# Wait for the process to complete
stdout, stderr = await process.communicate()
# Store return code
exit_code = process.returncode
results["return_code"] = exit_code
# Log output
if stdout:
stdout_lines = stdout.decode().strip().split('\n')
for line in stdout_lines[:5]: # Log only first 5 lines
self._add_log(f"[INFO] {model_name} - {line}")
# Log errors if any
if stderr and exit_code != 0:
stderr_lines = stderr.decode().strip().split('\n')
for line in stderr_lines[:5]: # Log only first 5 lines
self._add_log(f"[ERROR] {model_name} - {line}")
# Find any JSON result files - LightEval organizes by model name in different ways
result_files = []
results_dir = Path(self.output_dir) / "results"
if results_dir.exists():
# Parcourir récursivement tous les répertoires pour trouver des fichiers JSON
for json_file in results_dir.glob("**/*.json"):
# Check if the filename or path contains parts of the model name
model_parts = [
model_name, # Full name
model_name.replace('/', '_'), # Name with / replaced by _
model_name.split('/')[-1] # Just the model name without the organization
]
if any(part in str(json_file) for part in model_parts):
result_files.append(json_file)
# Traiter les fichiers de résultats trouvés
if result_files:
# Prendre le fichier le plus récent
result_files.sort(key=lambda x: x.stat().st_mtime, reverse=True)
latest_result = result_files[0]
self._add_log(f"[INFO] {model_name} - Found result file: {latest_result}")
try:
with open(latest_result, 'r') as f:
test_results = json.load(f)
# Vérifier si les résultats contiennent les informations essentielles
if (test_results and
isinstance(test_results, dict) and
"results" in test_results and
"all" in test_results["results"]):
# Enregistrer les résultats
results["results"] = test_results
results["success"] = True
# Afficher la précision
accuracy = test_results["results"]["all"]["accuracy"]
accuracy_stderr = test_results["results"]["all"]["accuracy_stderr"]
self._add_log(f"[SUCCESS] {model_name} - Accuracy: {accuracy:.4f} ± {accuracy_stderr:.4f}")
else:
results["error"] = "Incomplete or unexpected result format"
self._add_log(f"[WARNING] {model_name} - Unexpected result format")
except (json.JSONDecodeError, KeyError) as e:
results["error"] = f"Error reading results: {str(e)}"
self._add_log(f"[ERROR] {model_name} - {results['error']}")
# Si aucun résultat trouvé
if not results["success"]:
if exit_code == 0:
results["error"] = "Execution completed without error but no results found"
self._add_log(f"[WARNING] {model_name} - {results['error']}")
else:
results["error"] = f"Execution error (code: {exit_code})"
self._add_log(f"[ERROR] {model_name} - {results['error']}")
except Exception as e:
results["error"] = f"Exception: {str(e)}"
self._add_log(f"[ERROR] Exception during evaluation of {model_name}: {str(e)}")
finally:
# Delete temporary file
try:
os.unlink(temp_file_path)
except:
pass
return results
async def _run_evaluations(self) -> List[Dict[str, Any]]:
"""
Run evaluations for all models
Returns:
List of evaluation results
"""
self._add_log(f"[INFO] Starting evaluations for {len(self.models)} models")
# Create tasks for each model
tasks = [self._evaluate_model(model) for model in self.models]
# Run all tasks concurrently and gather results
model_results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results
results = []
for i, result in enumerate(model_results):
if isinstance(result, Exception):
# Handle exception
model_name, provider = self.models[i]
self._add_log(f"[ERROR] Evaluation failed for {model_name}: {str(result)}")
results.append({
"model_name": model_name,
"provider": provider,
"success": False,
"error": str(result),
"results": None,
"return_code": None
})
else:
# Valid result
results.append(result)
return results
def _format_comparison_results(self, results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Format results for easy comparison between models
Args:
results: List of evaluation results
Returns:
Dictionary with formatted comparison results
"""
comparison = {
"metadata": {
"timestamp": time.strftime("%Y-%m-%d %H:%M:%S"),
"dataset": f"{self.organization}/{self.dataset_name}",
"total_models_tested": len(results),
"successful_tests": len([r for r in results if r["success"]])
},
"models_comparison": []
}
# Liste des modèles réussis et des modèles échoués
successful_models = [r for r in results if r["success"]]
failed_models = [r for r in results if not r["success"]]
# Trier les modèles réussis par précision (du plus précis au moins précis)
if successful_models:
sorted_successful = sorted(
successful_models,
key=lambda x: x["results"]["results"]["all"]["accuracy"],
reverse=True # Du plus grand au plus petit
)
else:
sorted_successful = []
# Trier les modèles échoués par nom
sorted_failed = sorted(failed_models, key=lambda x: x["model_name"])
# Concaténer: d'abord les réussites, puis les échecs
sorted_results = sorted_successful + sorted_failed
# Créer l'entrée pour chaque modèle
for result in sorted_results:
model_result = {
"model_name": result["model_name"],
"provider": result["provider"],
"success": result["success"]
}
if result["success"]:
# Ajouter les métriques de précision et temps d'exécution
model_result.update({
"accuracy": result["results"]["results"]["all"]["accuracy"],
"accuracy_stderr": result["results"]["results"]["all"]["accuracy_stderr"],
"evaluation_time": float(result["results"]["config_general"]["total_evaluation_time_secondes"])
})
else:
# Ajouter l'erreur
model_result["error"] = result.get("error", "Unknown reason")
comparison["models_comparison"].append(model_result)
return comparison
async def _upload_results_to_dataset(self, comparison_results: Dict[str, Any]) -> bool:
"""
Upload evaluation results to the HuggingFace dataset
Args:
comparison_results: The formatted comparison results
Returns:
bool: True if upload succeeded, False otherwise
"""
try:
# Create a timestamp for the results file
timestamp = time.strftime("%Y%m%d_%H%M%S")
result_filename = f"lighteval_results.json"
# Create temporary file for upload
temp_file_path = tempfile.mktemp(suffix=".json")
with open(temp_file_path, 'w') as f:
json.dump(comparison_results, f, indent=2)
# Initialize HF API
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
self._add_log("[ERROR] HF_TOKEN not found, cannot upload results to dataset")
return False
api = HfApi(token=hf_token)
dataset_id = f"{self.organization}/{self.dataset_name}"
# Prepare the file operation
operation = CommitOperationAdd(
path_in_repo=f"lighteval_results/{result_filename}",
path_or_fileobj=temp_file_path
)
# Upload the file
self._add_log(f"[INFO] Uploading results to dataset {dataset_id}")
api.create_commit(
repo_id=dataset_id,
repo_type="dataset",
operations=[operation],
commit_message=f"Add evaluation results from {timestamp}"
)
# Cleanup temporary file
os.unlink(temp_file_path)
self._add_log(f"[SUCCESS] Results uploaded to dataset {dataset_id} at lighteval_results/{result_filename}")
return True
except Exception as e:
self._add_log(f"[ERROR] Failed to upload results to dataset: {str(e)}")
return False
async def _process_evaluation_results(self, results: List[Dict[str, Any]]) -> None:
"""
Process evaluation results, create summaries and save files
Args:
results: List of evaluation results
"""
if results:
try:
# Save detailed results
detailed_output_file = f"{self.output_dir}/detailed_results.json"
os.makedirs(os.path.dirname(detailed_output_file), exist_ok=True)
with open(detailed_output_file, 'w') as f:
json.dump(results, f, indent=2)
self._add_log(f"[INFO] Detailed results saved in {detailed_output_file}")
# Generate and save comparison results
comparison = self._format_comparison_results(results)
comparison_file = f"{self.output_dir}/models_comparison.json"
with open(comparison_file, 'w') as f:
json.dump(comparison, f, indent=2)
self._add_log(f"[INFO] Models comparison saved in {comparison_file}")
# Upload results to the dataset
await self._upload_results_to_dataset(comparison)
# Store results for later access
self.results = comparison
self._add_log("[SUCCESS] Evaluation completed")
except Exception as e:
self._add_log(f"[ERROR] Error during evaluation execution: {str(e)}")
finally:
self.is_completed = True
def _async_run(self) -> None:
"""
Run the evaluation asynchronously
"""
async def run_async():
try:
# Run evaluations
results = await self._run_evaluations()
# Process evaluation results
await self._process_evaluation_results(results)
except Exception as e:
self._add_log(f"[ERROR] Error during evaluation execution: {str(e)}")
finally:
self.is_completed = True
# Create and run the asyncio event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(run_async())
loop.close()
def run(self) -> None:
"""
Run the evaluation task in a separate thread
"""
self._add_log("[INFO] Starting evaluation")
# Run in a separate thread to not block the main thread
thread = threading.Thread(target=self._async_run)
thread.daemon = True
thread.start()
|