File size: 22,429 Bytes
0e34dc4
 
 
 
 
4759fe1
0e34dc4
13efede
 
 
0e34dc4
 
 
 
13efede
 
 
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
81e0b0c
0e34dc4
4759fe1
 
0e34dc4
 
 
97bea1c
aae1c13
 
97bea1c
 
 
 
81e0b0c
 
97bea1c
 
0e34dc4
 
 
 
 
97bea1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae1c13
 
97bea1c
 
 
 
 
 
 
 
 
 
 
 
 
aae1c13
 
97bea1c
 
 
 
 
e64aebd
97bea1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e34dc4
 
 
97bea1c
0e34dc4
97bea1c
0e34dc4
 
 
 
 
 
 
 
97bea1c
0e34dc4
 
 
 
97bea1c
0e34dc4
 
 
 
97bea1c
0e34dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2805fc
 
0e34dc4
 
 
e64aebd
d2805fc
97bea1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64aebd
d2805fc
 
97bea1c
 
e64aebd
d2805fc
 
 
 
97bea1c
 
e64aebd
d2805fc
0e34dc4
d2805fc
97bea1c
 
0e34dc4
 
d2805fc
0e34dc4
 
 
d2805fc
0e34dc4
d2805fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e34dc4
c750639
 
d2805fc
0e34dc4
 
 
 
 
 
e64aebd
97bea1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4759fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae1c13
97bea1c
 
 
aae1c13
 
 
 
 
 
c4411e8
 
aae1c13
 
 
 
 
 
 
 
c4411e8
aae1c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97bea1c
aae1c13
 
97bea1c
 
 
 
aae1c13
97bea1c
aae1c13
97bea1c
4759fe1
aae1c13
4759fe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae1c13
 
4759fe1
 
0e34dc4
 
 
4759fe1
 
0e34dc4
 
 
 
e64aebd
4759fe1
aae1c13
e64aebd
0e34dc4
4759fe1
 
c750639
4759fe1
c750639
4759fe1
 
 
aae1c13
 
 
 
 
 
 
 
4759fe1
 
aae1c13
 
 
c750639
aae1c13
 
c750639
4759fe1
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import os
import logging
import json
from huggingface_hub import model_info, InferenceClient
from dotenv import load_dotenv
from config.models_config import PREFERRED_PROVIDERS, DEFAULT_BENCHMARK_MODEL, ALTERNATIVE_BENCHMARK_MODELS

# Load environment variables once at the module level
load_dotenv()

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def prioritize_providers(providers):
    """Prioritize preferred providers, keeping all others."""
    return sorted(providers, key=lambda provider: provider not in PREFERRED_PROVIDERS)

def test_provider(model_name: str, provider: str, verbose: bool = False) -> bool:
    """
    Test if a specific provider is available for a model using InferenceClient
    
    Args:
        model_name: Name of the model
        provider: Provider to test
        verbose: Whether to log detailed information
        
    Returns:
        True if the provider is available, False otherwise
    """

    try:
        load_dotenv()
        
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            if verbose:
                logger.warning("No HF_TOKEN found in environment variables. This will likely cause authentication failures.")
                print("WARNING: HF_TOKEN is missing. Most model providers require valid authentication.")
            # Essayer sans token (pour certains providers qui acceptent des requêtes anonymes)
            return _test_provider_without_token(model_name, provider, verbose)
        
        # Get HF organization from environment
        hf_organization = os.environ.get("HF_ORGANIZATION")
        if not hf_organization:
            if verbose:
                logger.warning("HF_ORGANIZATION not defined in environment")
        
        if verbose:
            logger.info(f"Testing provider {provider} for model {model_name}")
        
        # Initialize the InferenceClient with the specific provider
        try:
            client = InferenceClient(
                model=model_name,
                token=hf_token,
                provider=provider,
                # bill_to=hf_organization if hf_organization else None,
                timeout=3  # Increased timeout to allow model loading
            )
                
            try:
                # Use the chat completions method for testing
                response = client.chat_completion(
                    messages=[{"role": "user", "content": "Hello"}],
                    max_tokens=5
                )
                
                if verbose:
                    logger.info(f"Provider {provider} is available for {model_name}")
                return True
                
            except Exception as e:
                if verbose:
                    error_message = str(e)
                    logger.warning(f"Error with provider {provider}: {error_message}")
                    
                    # Log specific error types if we can identify them
                    if "status_code=429" in error_message:
                        logger.warning(f"Provider {provider} rate limited. You may need to wait or upgrade your plan.")
                    elif "status_code=401" in error_message or "status_code=403" in error_message:
                        logger.warning(f"Authentication failed for provider {provider}. Your HF_TOKEN may be invalid or expired.")
                        print(f"Authentication error with provider {provider}. Please check your HF_TOKEN.")
                        # Essayer sans token
                        if verbose:
                            logger.info(f"Trying provider {provider} without authentication")
                        return _test_provider_without_token(model_name, provider, verbose)
                    elif "status_code=503" in error_message:
                        logger.warning(f"Provider {provider} service unavailable. Model may be loading or provider is down.")
                    elif "timed out" in error_message.lower():
                        logger.warning(f"Timeout error with provider {provider} - request timed out after 10 seconds")
                return False
        except Exception as auth_error:
            if "401" in str(auth_error) or "Unauthorized" in str(auth_error):
                # En cas d'erreur d'authentification, essayer sans token
                if verbose:
                    logger.warning(f"Authentication error with {provider}: {str(auth_error)}. Your HF_TOKEN may be invalid.")
                    print(f"Authentication error detected. Please verify your HF_TOKEN is valid and has appropriate permissions.")
                return _test_provider_without_token(model_name, provider, verbose)
            else:
                if verbose:
                    logger.warning(f"Error creating client for {provider}: {str(auth_error)}")
                return False
            
    except Exception as e:
        if verbose:
            logger.warning(f"Error in test_provider: {str(e)}")
        return False

def _test_provider_without_token(model_name: str, provider: str, verbose: bool = False) -> bool:
    """
    Essaye de tester un provider sans token d'authentification
    
    Args:
        model_name: Nom du modèle
        provider: Provider à tester
        verbose: Afficher les logs détaillés
        
    Returns:
        True si le provider est disponible, False sinon
    """
    try:
        if verbose:
            logger.info(f"Testing provider {provider} for model {model_name} without authentication")
        
        # Initialize without token
        client = InferenceClient(
            model=model_name,
            provider=provider,
            timeout=3
        )
        
        try:
            # Use the chat completions method for testing
            response = client.chat_completion(
                messages=[{"role": "user", "content": "Hello"}],
                max_tokens=5
            )
            
            if verbose:
                logger.info(f"Provider {provider} is available for {model_name} without authentication")
            return True
            
        except Exception as e:
            if verbose:
                logger.warning(f"Error with provider {provider} without authentication: {str(e)}")
            return False
            
    except Exception as e:
        if verbose:
            logger.warning(f"Error in _test_provider_without_token: {str(e)}")
        return False

def get_available_model_provider(model_name, verbose=False):
    """
    Get the first available provider for a given model.
    
    Args:
        model_name: Name of the model on the Hub
        verbose: Whether to log detailed information
        
    Returns:
        First available provider or None if none are available
    """
    try:
        # Get HF token from environment
        hf_token = os.environ.get("HF_TOKEN")
        if not hf_token:
            if verbose:
                logger.error("HF_TOKEN not defined in environment")
            raise ValueError("HF_TOKEN not defined in environment")
        
        # Get providers for the model and prioritize them
        info = None
        try:
            # Essayer avec le token
            try:
                if verbose:
                    logger.info(f"Trying to get model info for {model_name} with auth token")
                info = model_info(model_name, token=hf_token, expand="inferenceProviderMapping")
            except Exception as auth_error:
                # Si l'authentification échoue, essayer sans token (pour les modèles publics)
                if "401" in str(auth_error) or "Unauthorized" in str(auth_error):
                    if verbose:
                        logger.warning(f"Authentication failed for {model_name}, trying without token")
                    # Essayer de récupérer les infos sans token
                    try:
                        info = model_info(model_name, expand="inferenceProviderMapping")
                    except Exception as e:
                        if verbose:
                            logger.error(f"Failed to get model info without token: {str(e)}")
                        # Comme dernier recours, retourner la liste des providers par défaut pour tester
                        if verbose:
                            logger.warning(f"Using default providers list as fallback for {model_name}")
                        # Fournir une liste de providers de secours pour tester directement
                        return _test_fallback_providers(model_name, verbose)
                else:
                    # Autre erreur, la relancer
                    raise auth_error
            
            if not info or not hasattr(info, "inference_provider_mapping"):
                if verbose:
                    logger.info(f"No inference providers found for {model_name}")
                # Essayer avec la liste de providers par défaut
                return _test_fallback_providers(model_name, verbose)
            
            providers = list(info.inference_provider_mapping.keys())
            if not providers:
                if verbose:
                    logger.info(f"Empty list of providers for {model_name}")
                # Essayer avec la liste de providers par défaut
                return _test_fallback_providers(model_name, verbose)
                
        except Exception as e:
            if verbose:
                logger.error(f"Error retrieving model info for {model_name}: {str(e)}")
            # Essayer avec la liste de providers par défaut
            return _test_fallback_providers(model_name, verbose)
            
        # Prioritize providers
        prioritized_providers = prioritize_providers(providers)
        
        if verbose:
            logger.info(f"Available providers for {model_name}: {', '.join(providers)}")
            logger.info(f"Prioritized providers: {', '.join(prioritized_providers)}")
        
        # Test each preferred provider first
        failed_providers = []
        for provider in prioritized_providers:
            if verbose:
                logger.info(f"Testing provider {provider} for {model_name}")
            
            try:
                if test_provider(model_name, provider, verbose):
                    if verbose:
                        logger.info(f"Provider {provider} is available for {model_name}")
                    return provider
                else:
                    failed_providers.append(provider)
                    if verbose:
                        logger.warning(f"Provider {provider} test failed for {model_name}")
            except Exception as e:
                failed_providers.append(provider)
                if verbose:
                    logger.error(f"Exception while testing provider {provider} for {model_name}: {str(e)}")
                
        # If all prioritized providers failed, try any remaining providers
        remaining_providers = [p for p in providers if p not in prioritized_providers and p not in failed_providers]
        
        if remaining_providers and verbose:
            logger.info(f"Trying remaining non-prioritized providers: {', '.join(remaining_providers)}")
            
        for provider in remaining_providers:
            if verbose:
                logger.info(f"Testing non-prioritized provider {provider} for {model_name}")
                
            try:
                if test_provider(model_name, provider, verbose):
                    if verbose:
                        logger.info(f"Non-prioritized provider {provider} is available for {model_name}")
                    return provider
            except Exception as e:
                if verbose:
                    logger.error(f"Exception while testing non-prioritized provider {provider}: {str(e)}")
                
        # If we've tried all providers and none worked, log this but don't raise an exception
        if verbose:
            logger.error(f"No available providers for {model_name}. Tried {len(failed_providers + remaining_providers)} providers.")
        return None
        
    except Exception as e:
        if verbose:
            logger.error(f"Error in get_available_model_provider: {str(e)}")
        return None
        
def _test_fallback_providers(model_name, verbose=False):
    """
    Fonction de secours qui teste une liste de providers communs sans passer par l'API
    
    Args:
        model_name: Nom du modèle
        verbose: Afficher les logs détaillés
    
    Returns:
        Le premier provider disponible ou None
    """
    # Liste de providers à tester en direct
    default_providers = ["huggingface", "sambanova", "novita", "fireworks-ai", "together", "openai", "anthropic"]
    
    if verbose:
        logger.warning(f"Using fallback providers list for {model_name}: {', '.join(default_providers)}")
    
    # Tester chaque provider directement
    for provider in default_providers:
        if verbose:
            logger.info(f"Testing fallback provider {provider} for {model_name}")
        try:
            if test_provider(model_name, provider, verbose):
                if verbose:
                    logger.info(f"FALLBACK: Provider {provider} is available for {model_name}")
                return provider
        except Exception as e:
            if verbose:
                logger.warning(f"FALLBACK: Error testing provider {provider} for {model_name}: {str(e)}")
    
    return None

def test_models(verbose=True):
    """
    Test le modèle par défaut et les modèles alternatifs, puis retourne un résumé des résultats.
    
    Args:
        verbose: Afficher les logs détaillés
        
    Returns:
        Un dictionnaire avec les résultats des tests
    """
    results = {
        "default_model": None,
        "working_model": None,
        "provider": None,
        "all_models": {},
        "available_models": [],
        "unavailable_models": []
    }
    
    print("\n===== Checking HuggingFace Authentication =====")
    # Obtenez le jeton HF
    hf_token = os.environ.get("HF_TOKEN")
    if hf_token:
        print("✅ HF_TOKEN is available")
        
        # Vérifier si le token a un format valide (vérification simple)
        if not hf_token.startswith("hf_"):
            print("⚠️ WARNING: Your HF_TOKEN does not start with 'hf_' which is unusual. Please verify its format.")
        
        # Ne montrer aucun caractère du token, juste indiquer sa présence
        masked_token = "••••••••••"
        
        # Vérifier la validité du token en testant directement l'API d'inférence
        import requests
        try:
            # Test avec un modèle public simple (gpt2)
            test_model = "gpt2"
            api_url = f"https://api-inference.huggingface.co/models/{test_model}"
            
            print(f"Testing token with inference API on public model {test_model}...")
            
            headers = {"Authorization": f"Bearer {hf_token}"}
            payload = {"inputs": "Hello, how are you?"}
            
            response = requests.post(api_url, headers=headers, json=payload, timeout=10)
            
            if response.status_code in [200, 503]:  # 503 = modèle en cours de chargement, mais le token est accepté
                print(f"✅ HF_TOKEN validated - Token accepted by the inference API! Status: {response.status_code}")
                if response.status_code == 503:
                    print("ℹ️ Model is loading, but token is valid")
                
                # Si le token est valide pour l'API d'inférence, vérifions également si nous pouvons obtenir
                # des informations sur l'utilisateur (mais ce n'est pas bloquant si ça échoue)
                try:
                    whoami_response = requests.get(
                        "https://huggingface.co/api/whoami",
                        headers={"Authorization": f"Bearer {hf_token}"}
                    )
                    
                    if whoami_response.status_code == 200:
                        user_info = whoami_response.json()
                        print(f"✅ Additional info - Authenticated as: {user_info.get('name', 'Unknown user')}")
                        
                        # Vérifier si l'utilisateur a accès à des modèles payants
                        if user_info.get('canPay', False):
                            print("✅ Your account has payment methods configured - you may have access to premium models")
                        else:
                            print("ℹ️ Your account does not have payment methods configured - access to premium models may be limited")
                except Exception:
                    # Ignorer les erreurs lors de la récupération des infos utilisateur
                    pass
            else:
                print(f"❌ HF_TOKEN validation failed with status code: {response.status_code}")
                error_message = "Unknown error"
                try:
                    error_data = response.json()
                    if "error" in error_data:
                        error_message = error_data["error"]
                        print(f"❌ Error message: {error_message}")
                except:
                    print(f"❌ Error message: {response.text}")
                
                print("⚠️ Most model providers will not work with invalid credentials")
                
                # Test alternatif avec l'endpoint status
                try:
                    print("Attempting alternative validation with status endpoint...")
                    status_url = "https://api-inference.huggingface.co/status"
                    status_response = requests.get(status_url, headers=headers, timeout=10)
                    
                    if status_response.status_code == 200:
                        print("✅ Token can access the status endpoint. This is partially good news.")
                    else:
                        print(f"❌ Status endpoint test also failed: {status_response.status_code}")
                except Exception as e:
                    print(f"❌ Alternative validation also failed: {str(e)}")
        except Exception as e:
            print(f"❌ Error validating HF_TOKEN with inference API: {str(e)}")
    else:
        print("❌ HF_TOKEN is missing - authentication to HuggingFace API will fail")
        print("⚠️ Most models and providers require authentication")

    # Obtenez l'organisation HF
    hf_organization = os.environ.get("HF_ORGANIZATION")
    if hf_organization:
        print(f"✅ HF_ORGANIZATION is available: {hf_organization}")
    else:
        print("ℹ️ HF_ORGANIZATION is not set")
    
    if verbose:
        print(f"\n===== Testing main default model: {DEFAULT_BENCHMARK_MODEL} =====")
        
    # Test du modèle par défaut
    provider = get_available_model_provider(DEFAULT_BENCHMARK_MODEL, verbose=verbose)
    
    if provider:
        if verbose:
            print(f"\n✅ SUCCESS: Found provider for default model {DEFAULT_BENCHMARK_MODEL}: {provider}")
        results["default_model"] = DEFAULT_BENCHMARK_MODEL
        results["working_model"] = DEFAULT_BENCHMARK_MODEL
        results["provider"] = provider
    else:
        if verbose:
            print(f"\n❌ DEFAULT MODEL FAILED: No provider found for {DEFAULT_BENCHMARK_MODEL}")
            print("Trying alternative models...")
        
        # Essayer les modèles alternatifs
        for alt_model in ALTERNATIVE_BENCHMARK_MODELS:
            if verbose:
                print(f"\nTrying alternative model: {alt_model}")
            alt_provider = get_available_model_provider(alt_model, verbose=verbose)
            if alt_provider:
                if verbose:
                    print(f"\n✅ SUCCESS: Found provider for alternative model {alt_model}: {alt_provider}")
                results["working_model"] = alt_model
                results["provider"] = alt_provider
                break
            elif verbose:
                print(f"❌ Failed to find provider for alternative model: {alt_model}")
        else:
            if verbose:
                print("\n❌ ALL MODELS FAILED: No provider found for any model")
                print("\n⚠️ This is likely due to authentication issues with your HF_TOKEN")
                print("⚠️ Please check your token or try using models that don't require authentication")
    
    # Tester tous les modèles pour avoir une vue d'ensemble
    models = [
        "Qwen/QwQ-32B",
        "Qwen/Qwen2.5-72B-Instruct",
        "Qwen/Qwen2.5-32B-Instruct",
        "meta-llama/Llama-3.1-8B-Instruct",
        "meta-llama/Llama-3.3-70B-Instruct",
        "deepseek-ai/DeepSeek-R1-Distill-Llama-70B",
        "mistralai/Mistral-Small-24B-Instruct-2501",
    ]

    if verbose:
        print("\n===== Testing all available models =====")

    for model in models:
        provider = get_available_model_provider(model, verbose)
        results["all_models"][model] = provider
        if provider:
            results["available_models"].append((model, provider))
        else:
            results["unavailable_models"].append(model)
    
    if verbose:
        print("\n===== Results Summary =====")
        if results["available_models"]:
            print("Models with available providers:")
            for model, provider in results["available_models"]:
                print(f"✅ Model: {model}, Provider: {provider}")
        else:
            print("❌ No models with available providers found")
            print("⚠️ Please check your HF_TOKEN and permissions")
            
        if results["unavailable_models"]:
            print("\nModels with no available providers:")
            for model in results["unavailable_models"]:
                print(f"❌ {model}")
        
        print(f"\nTotal Available Models: {len(results['available_models'])}")
        print(f"Total Unavailable Models: {len(results['unavailable_models'])}")
    
    return results
        
if __name__ == "__main__":
    # Exécuter le test si le script est lancé directement
    test_results = test_models(verbose=True)